Exploring Cultural Variations in Moral Judgments with Large Language Models
- URL: http://arxiv.org/abs/2506.12433v1
- Date: Sat, 14 Jun 2025 10:16:48 GMT
- Title: Exploring Cultural Variations in Moral Judgments with Large Language Models
- Authors: Hadi Mohammadi, Efthymia Papadopoulou, Yasmeen F. S. S. Meijer, Ayoub Bagheri,
- Abstract summary: Using log-probability-based moral justifiability scores, we correlate each model's outputs with survey data covering a broad set of ethical topics.<n>Our results show that many earlier or smaller models often produce near-zero or negative correlations with human judgments.<n> advanced instruction-tuned models (including GPT-4o and GPT-4o-mini) achieve substantially higher positive correlations, suggesting they better reflect real-world moral attitudes.
- Score: 0.5356944479760104
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have shown strong performance across many tasks, but their ability to capture culturally diverse moral values remains unclear. In this paper, we examine whether LLMs can mirror variations in moral attitudes reported by two major cross-cultural surveys: the World Values Survey and the PEW Research Center's Global Attitudes Survey. We compare smaller, monolingual, and multilingual models (GPT-2, OPT, BLOOMZ, and Qwen) with more recent instruction-tuned models (GPT-4o, GPT-4o-mini, Gemma-2-9b-it, and Llama-3.3-70B-Instruct). Using log-probability-based moral justifiability scores, we correlate each model's outputs with survey data covering a broad set of ethical topics. Our results show that many earlier or smaller models often produce near-zero or negative correlations with human judgments. In contrast, advanced instruction-tuned models (including GPT-4o and GPT-4o-mini) achieve substantially higher positive correlations, suggesting they better reflect real-world moral attitudes. While scaling up model size and using instruction tuning can improve alignment with cross-cultural moral norms, challenges remain for certain topics and regions. We discuss these findings in relation to bias analysis, training data diversity, and strategies for improving the cultural sensitivity of LLMs.
Related papers
- Do Large Language Models Understand Morality Across Cultures? [0.5356944479760104]
This study investigates the extent to which large language models capture cross-cultural differences and similarities in moral perspectives.<n>Our results reveal that current LLMs often fail to reproduce the full spectrum of cross-cultural moral variation.<n>These findings highlight a pressing need for more robust approaches to mitigate biases and improve cultural representativeness in LLMs.
arXiv Detail & Related papers (2025-07-28T20:25:36Z) - From Surveys to Narratives: Rethinking Cultural Value Adaptation in LLMs [57.43233760384488]
Adapting cultural values in Large Language Models (LLMs) presents significant challenges.<n>Prior work primarily aligns LLMs with different cultural values using World Values Survey (WVS) data.<n>In this paper, we investigate WVS-based training for cultural value adaptation and find that relying solely on survey data cane cultural norms and interfere with factual knowledge.
arXiv Detail & Related papers (2025-05-22T09:00:01Z) - Multimodal Cultural Safety: Evaluation Frameworks and Alignment Strategies [58.88053690412802]
Large vision-language models (LVLMs) are increasingly deployed in globally distributed applications, such as tourism assistants.<n> CROSS is a benchmark designed to assess the cultural safety reasoning capabilities of LVLMs.<n>We evaluate 21 leading LVLMs, including mixture-of-experts models and reasoning models.
arXiv Detail & Related papers (2025-05-20T23:20:38Z) - Whose Morality Do They Speak? Unraveling Cultural Bias in Multilingual Language Models [0.0]
Large language models (LLMs) have become integral tools in diverse domains, yet their moral reasoning capabilities remain underexplored.<n>This study investigates whether multilingual LLMs, such as GPT-3.5-Turbo, reflect culturally specific moral values or impose dominant moral norms.<n>Using the updated Moral Foundations Questionnaire (MFQ-2) in eight languages, the study analyzes the models' adherence to six core moral foundations.
arXiv Detail & Related papers (2024-12-25T10:17:15Z) - LLMs as mirrors of societal moral standards: reflection of cultural divergence and agreement across ethical topics [0.5852077003870417]
Large language models (LLMs) have become increasingly pivotal in various domains due to the recent advancements in their performance capabilities.<n>This study investigates whether LLMs accurately reflect cross-cultural variations and similarities in moral perspectives.
arXiv Detail & Related papers (2024-12-01T20:39:42Z) - Large Language Models as Mirrors of Societal Moral Standards [0.5852077003870417]
Language models can, to a limited extent, represent moral norms in a variety of cultural contexts.<n>This study evaluates the effectiveness of these models using information from two surveys, the WVS and the PEW, that encompass moral perspectives from over 40 countries.<n>The results show that biases exist in both monolingual and multilingual models, and they typically fall short of accurately capturing the moral intricacies of diverse cultures.
arXiv Detail & Related papers (2024-12-01T20:20:35Z) - Large Language Models Reflect the Ideology of their Creators [71.65505524599888]
Large language models (LLMs) are trained on vast amounts of data to generate natural language.<n>This paper shows that the ideological stance of an LLM appears to reflect the worldview of its creators.
arXiv Detail & Related papers (2024-10-24T04:02:30Z) - Exploring and steering the moral compass of Large Language Models [55.2480439325792]
Large Language Models (LLMs) have become central to advancing automation and decision-making across various sectors.
This study proposes a comprehensive comparative analysis of the most advanced LLMs to assess their moral profiles.
arXiv Detail & Related papers (2024-05-27T16:49:22Z) - CulturePark: Boosting Cross-cultural Understanding in Large Language Models [63.452948673344395]
This paper introduces CulturePark, an LLM-powered multi-agent communication framework for cultural data collection.
It generates high-quality cross-cultural dialogues encapsulating human beliefs, norms, and customs.
We evaluate these models across three downstream tasks: content moderation, cultural alignment, and cultural education.
arXiv Detail & Related papers (2024-05-24T01:49:02Z) - Not All Countries Celebrate Thanksgiving: On the Cultural Dominance in
Large Language Models [89.94270049334479]
This paper identifies a cultural dominance issue within large language models (LLMs)
LLMs often provide inappropriate English-culture-related answers that are not relevant to the expected culture when users ask in non-English languages.
arXiv Detail & Related papers (2023-10-19T05:38:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.