Feeling Machines: Ethics, Culture, and the Rise of Emotional AI
- URL: http://arxiv.org/abs/2506.12437v1
- Date: Sat, 14 Jun 2025 10:28:26 GMT
- Title: Feeling Machines: Ethics, Culture, and the Rise of Emotional AI
- Authors: Vivek Chavan, Arsen Cenaj, Shuyuan Shen, Ariane Bar, Srishti Binwani, Tommaso Del Becaro, Marius Funk, Lynn Greschner, Roberto Hung, Stina Klein, Romina Kleiner, Stefanie Krause, Sylwia Olbrych, Vishvapalsinhji Parmar, Jaleh Sarafraz, Daria Soroko, Daksitha Withanage Don, Chang Zhou, Hoang Thuy Duong Vu, Parastoo Semnani, Daniel Weinhardt, Elisabeth Andre, Jörg Krüger, Xavier Fresquet,
- Abstract summary: This paper explores the growing presence of emotionally responsive artificial intelligence through a critical and interdisciplinary lens.<n>It explores how AI systems that simulate or interpret human emotions are reshaping our interactions in areas such as education, healthcare, mental health, caregiving, and digital life.<n>The analysis is structured around four central themes: the ethical implications of emotional AI, the cultural dynamics of human-machine interaction, the risks and opportunities for vulnerable populations, and the emerging regulatory, design, and technical considerations.
- Score: 18.212492056071657
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores the growing presence of emotionally responsive artificial intelligence through a critical and interdisciplinary lens. Bringing together the voices of early-career researchers from multiple fields, it explores how AI systems that simulate or interpret human emotions are reshaping our interactions in areas such as education, healthcare, mental health, caregiving, and digital life. The analysis is structured around four central themes: the ethical implications of emotional AI, the cultural dynamics of human-machine interaction, the risks and opportunities for vulnerable populations, and the emerging regulatory, design, and technical considerations. The authors highlight the potential of affective AI to support mental well-being, enhance learning, and reduce loneliness, as well as the risks of emotional manipulation, over-reliance, misrepresentation, and cultural bias. Key challenges include simulating empathy without genuine understanding, encoding dominant sociocultural norms into AI systems, and insufficient safeguards for individuals in sensitive or high-risk contexts. Special attention is given to children, elderly users, and individuals with mental health challenges, who may interact with AI in emotionally significant ways. However, there remains a lack of cognitive or legal protections which are necessary to navigate such engagements safely. The report concludes with ten recommendations, including the need for transparency, certification frameworks, region-specific fine-tuning, human oversight, and longitudinal research. A curated supplementary section provides practical tools, models, and datasets to support further work in this domain.
Related papers
- Neural Brain: A Neuroscience-inspired Framework for Embodied Agents [58.58177409853298]
Current AI systems, such as large language models, remain disembodied, unable to physically engage with the world.<n>At the core of this challenge lies the concept of Neural Brain, a central intelligence system designed to drive embodied agents with human-like adaptability.<n>This paper introduces a unified framework for the Neural Brain of embodied agents, addressing two fundamental challenges.
arXiv Detail & Related papers (2025-05-12T15:05:34Z) - From Regulation to Support: Centering Humans in Technology-Mediated Emotion Intervention in Care Contexts [14.37689273103118]
"Emotion support" is an alternative approach to "emotion regulation," emphasizing human-centered approaches to emotional well-being.<n>This work advances the understanding of diverse human emotional needs beyond individual and cognitive perspectives.
arXiv Detail & Related papers (2025-04-17T03:35:01Z) - AI Identity, Empowerment, and Mindfulness in Mitigating Unethical AI Use [0.0]
This study examines how AI identity influences psychological empowerment and unethical AI behavior among college students.<n>Findings show that a strong AI identity enhances psychological empowerment and academic engagement but can also lead to increased unethical AI practices.<n>IT mindfulness acts as an ethical safeguard, promoting sensitivity to ethical concerns and reducing misuse of AI.
arXiv Detail & Related papers (2025-03-25T22:36:21Z) - Envisioning an AI-Enhanced Mental Health Ecosystem [1.534667887016089]
We explore various AI applications in peer support, self-help interventions, proactive monitoring, and data-driven insights.<n>We propose a hybrid ecosystem where AI assists but does not replace human providers, emphasising responsible deployment and evaluation.
arXiv Detail & Related papers (2025-03-19T04:21:38Z) - Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities [61.633126163190724]
Mental illness is a widespread and debilitating condition with substantial societal and personal costs.<n>Recent advances in Artificial Intelligence (AI) hold great potential for recognizing and addressing conditions such as depression, anxiety disorder, bipolar disorder, schizophrenia, and post-traumatic stress disorder.<n>Privacy concerns, including the risk of sensitive data leakage from datasets and trained models, remain a critical barrier to deploying these AI systems in real-world clinical settings.
arXiv Detail & Related papers (2025-02-01T15:10:02Z) - Artificial Intelligence in Mental Health and Well-Being: Evolution, Current Applications, Future Challenges, and Emerging Evidence [3.0655356440262334]
The paper discusses the evolution, present application, and future challenges in the field of AI for mental health and well-being.<n>The integration of AI in mental health has grown rapidly to augment traditional treatment and open innovative solutions.<n> Ethical challenges persist, however, most notably around privacy, data security, and algorithmic bias.
arXiv Detail & Related papers (2024-12-13T22:06:35Z) - The AI Interface: Designing for the Ideal Machine-Human Experience (Editorial) [1.8074330674710588]
This editorial introduces a Special Issue that explores the psychology of AI experience design.<n>Papers in this collection highlight the complexities of trust, transparency, and emotional sensitivity in human-AI interaction.<n>By findings from eight diverse studies, this editorial underscores the need for AI interfaces to balance efficiency with empathy.
arXiv Detail & Related papers (2024-11-29T15:17:32Z) - Aligning Generalisation Between Humans and Machines [74.120848518198]
AI technology can support humans in scientific discovery and forming decisions, but may also disrupt democracies and target individuals.<n>The responsible use of AI and its participation in human-AI teams increasingly shows the need for AI alignment.<n>A crucial yet often overlooked aspect of these interactions is the different ways in which humans and machines generalise.
arXiv Detail & Related papers (2024-11-23T18:36:07Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We examine what is known about human wisdom and sketch a vision of its AI counterpart.<n>We argue that AI systems particularly struggle with metacognition.<n>We discuss how wise AI might be benchmarked, trained, and implemented.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - Enhancing Emotional Generation Capability of Large Language Models via Emotional Chain-of-Thought [50.13429055093534]
Large Language Models (LLMs) have shown remarkable performance in various emotion recognition tasks.
We propose the Emotional Chain-of-Thought (ECoT) to enhance the performance of LLMs on various emotional generation tasks.
arXiv Detail & Related papers (2024-01-12T16:42:10Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
In social robotics, endowing humanoid robots with the ability to generate bodily expressions of affect can improve human-robot interaction and collaboration.
We implement a deep learning data-driven framework that learns from a few hand-designed robotic bodily expressions.
The evaluation study found that the anthropomorphism and animacy of the generated expressions are not perceived differently from the hand-designed ones.
arXiv Detail & Related papers (2022-05-02T09:21:39Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.