Differentially Private Bilevel Optimization: Efficient Algorithms with Near-Optimal Rates
- URL: http://arxiv.org/abs/2506.12994v1
- Date: Sun, 15 Jun 2025 23:21:36 GMT
- Title: Differentially Private Bilevel Optimization: Efficient Algorithms with Near-Optimal Rates
- Authors: Andrew Lowy, Daogao Liu,
- Abstract summary: Bilevel optimization problem is nested inside another, underlies many machine learning applications with a hyper-learning structure.<n>Motivated by bilevel optimization, we develop novel algorithms with state-the-art-the- rates for finding the optimal bounds.
- Score: 9.07536816900443
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bilevel optimization, in which one optimization problem is nested inside another, underlies many machine learning applications with a hierarchical structure -- such as meta-learning and hyperparameter optimization. Such applications often involve sensitive training data, raising pressing concerns about individual privacy. Motivated by this, we study differentially private bilevel optimization. We first focus on settings where the outer-level objective is \textit{convex}, and provide novel upper and lower bounds on the excess risk for both pure and approximate differential privacy, covering both empirical and population-level loss. These bounds are nearly tight and essentially match the optimal rates for standard single-level differentially private ERM and stochastic convex optimization (SCO), up to additional terms that capture the intrinsic complexity of the nested bilevel structure. The bounds are achieved in polynomial time via efficient implementations of the exponential and regularized exponential mechanisms. A key technical contribution is a new method and analysis of log-concave sampling under inexact function evaluations, which may be of independent interest. In the \textit{non-convex} setting, we develop novel algorithms with state-of-the-art rates for privately finding approximate stationary points. Notably, our bounds do not depend on the dimension of the inner problem.
Related papers
- Linear-Time User-Level DP-SCO via Robust Statistics [55.350093142673316]
User-level differentially private convex optimization (DP-SCO) has garnered significant attention due to the importance of safeguarding user privacy in machine learning applications.<n>Current methods, such as those based on differentially private gradient descent (DP-SGD), often struggle with high noise accumulation and suboptimal utility.<n>We introduce a novel linear-time algorithm that leverages robust statistics, specifically the median and trimmed mean, to overcome these challenges.
arXiv Detail & Related papers (2025-02-13T02:05:45Z) - Contextual Stochastic Bilevel Optimization [50.36775806399861]
We introduce contextual bilevel optimization (CSBO) -- a bilevel optimization framework with the lower-level problem minimizing an expectation on some contextual information and the upper-level variable.
It is important for applications such as meta-learning, personalized learning, end-to-end learning, and Wasserstein distributionally robustly optimization with side information (WDRO-SI)
arXiv Detail & Related papers (2023-10-27T23:24:37Z) - Accelerated First-Order Optimization under Nonlinear Constraints [61.98523595657983]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.<n>An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - On Implicit Bias in Overparameterized Bilevel Optimization [38.11483853830913]
Bilevel problems consist of two nested sub-problems, called the outer and inner problems, respectively.
We investigate the implicit bias of gradient-based algorithms for bilevel optimization.
We show that the inner solutions obtained by warm-start BLO can encode a surprising amount of information about the outer objective.
arXiv Detail & Related papers (2022-12-28T18:57:46Z) - Bring Your Own Algorithm for Optimal Differentially Private Stochastic
Minimax Optimization [44.52870407321633]
holy grail of these settings is to guarantee the optimal trade-off between the privacy and the excess population loss.
We provide a general framework for solving differentially private minimax optimization (DP-SMO) problems.
Our framework is inspired from the recently proposed Phased-ERM method [20] for nonsmooth differentially private convex optimization (DP-SCO)
arXiv Detail & Related papers (2022-06-01T10:03:20Z) - A Constrained Optimization Approach to Bilevel Optimization with
Multiple Inner Minima [49.320758794766185]
We propose a new approach, which convert the bilevel problem to an equivalent constrained optimization, and then the primal-dual algorithm can be used to solve the problem.
Such an approach enjoys a few advantages including (a) addresses the multiple inner minima challenge; (b) fully first-order efficiency without Jacobian computations.
arXiv Detail & Related papers (2022-03-01T18:20:01Z) - The Minimax Complexity of Distributed Optimization [0.0]
I present the "graph oracle model", an extension of the classic oracle framework that can be applied to distributed optimization.
I focus on the specific case of the "intermittent communication setting"
I analyze the theoretical properties of the popular Local Descent (SGD) algorithm in convex setting.
arXiv Detail & Related papers (2021-09-01T15:18:33Z) - Efficient Methods for Structured Nonconvex-Nonconcave Min-Max
Optimization [98.0595480384208]
We propose a generalization extraient spaces which converges to a stationary point.
The algorithm applies not only to general $p$-normed spaces, but also to general $p$-dimensional vector spaces.
arXiv Detail & Related papers (2020-10-31T21:35:42Z) - Fast Objective & Duality Gap Convergence for Non-Convex Strongly-Concave
Min-Max Problems with PL Condition [52.08417569774822]
This paper focuses on methods for solving smooth non-concave min-max problems, which have received increasing attention due to deep learning (e.g., deep AUC)
arXiv Detail & Related papers (2020-06-12T00:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.