A Game-Theoretic Negotiation Framework for Cross-Cultural Consensus in LLMs
- URL: http://arxiv.org/abs/2506.13245v1
- Date: Mon, 16 Jun 2025 08:42:39 GMT
- Title: A Game-Theoretic Negotiation Framework for Cross-Cultural Consensus in LLMs
- Authors: Guoxi Zhang, Jiawei Chen, Tianzhuo Yang, Jiaming Ji, Yaodong Yang, Juntao Dai,
- Abstract summary: Large language models (LLMs) exhibit a pronounced WEIRD (Western, Educated, Industrialized, Rich, Democratic) cultural bias.<n>This monocultural perspective may reinforce dominant values and marginalize diverse cultural viewpoints.<n>We introduce a systematic framework designed to boost fair and robust cross-cultural consensus.
- Score: 10.655783463895325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing prevalence of large language models (LLMs) is influencing global value systems. However, these models frequently exhibit a pronounced WEIRD (Western, Educated, Industrialized, Rich, Democratic) cultural bias due to lack of attention to minority values. This monocultural perspective may reinforce dominant values and marginalize diverse cultural viewpoints, posing challenges for the development of equitable and inclusive AI systems. In this work, we introduce a systematic framework designed to boost fair and robust cross-cultural consensus among LLMs. We model consensus as a Nash Equilibrium and employ a game-theoretic negotiation method based on Policy-Space Response Oracles (PSRO) to simulate an organized cross-cultural negotiation process. To evaluate this approach, we construct regional cultural agents using data transformed from the World Values Survey (WVS). Beyond the conventional model-level evaluation method, We further propose two quantitative metrics, Perplexity-based Acceptence and Values Self-Consistency, to assess consensus outcomes. Experimental results indicate that our approach generates consensus of higher quality while ensuring more balanced compromise compared to baselines. Overall, it mitigates WEIRD bias by guiding agents toward convergence through fair and gradual negotiation steps.
Related papers
- WorldView-Bench: A Benchmark for Evaluating Global Cultural Perspectives in Large Language Models [1.094065133109559]
Large Language Models (LLMs) are predominantly trained and aligned in ways that reinforce Western-centric epistemologies and socio-cultural norms.<n>We introduce WorldView-Bench, a benchmark designed to evaluate Global Cultural Inclusivity (GCI) in LLMs by analyzing their ability to accommodate diverse worldviews.
arXiv Detail & Related papers (2025-05-14T17:43:40Z) - Cultural Learning-Based Culture Adaptation of Language Models [70.1063219524999]
Adapting large language models (LLMs) to diverse cultural values is a challenging task.<n>We present CLCA, a novel framework for enhancing LLM alignment with cultural values based on cultural learning.
arXiv Detail & Related papers (2025-04-03T18:16:26Z) - Negotiative Alignment: Embracing Disagreement to Achieve Fairer Outcomes -- Insights from Urban Studies [3.510270856154939]
We present findings from a community-centered study in Montreal involving 35 residents with diverse demographic and social identities.<n>We propose negotiative alignment, an AI framework that treats disagreement as an essential input to be preserved, analyzed, and addressed.
arXiv Detail & Related papers (2025-03-16T18:55:54Z) - Randomness, Not Representation: The Unreliability of Evaluating Cultural Alignment in LLMs [7.802103248428407]
We identify and test three assumptions behind current survey-based evaluation methods.<n>We find a high level of instability across presentation formats, incoherence between evaluated versus held-out cultural dimensions, and erratic behavior under prompt steering.
arXiv Detail & Related papers (2025-03-11T17:59:53Z) - Rethinking AI Cultural Alignment [1.8434042562191815]
We show that humans' cultural values must be understood within the context of specific AI systems.<n>We argue that cultural alignment should be reframed as a bidirectional process.
arXiv Detail & Related papers (2025-01-13T23:42:37Z) - ValuesRAG: Enhancing Cultural Alignment Through Retrieval-Augmented Contextual Learning [1.1343849658875087]
ValuesRAG is a novel framework that integrates cultural and demographic knowledge dynamically during text generation.<n>We evaluate ValuesRAG using 6 diverse regional datasets and show that it consistently outperforms baselines.<n>Our findings underscore the potential of dynamic retrieval-based methods to bridge the gap between global LLM capabilities and localized cultural values.
arXiv Detail & Related papers (2025-01-02T03:26:13Z) - LLM-GLOBE: A Benchmark Evaluating the Cultural Values Embedded in LLM Output [8.435090588116973]
We propose the LLM-GLOBE benchmark for evaluating the cultural value systems of LLMs.
We then leverage the benchmark to compare the values of Chinese and US LLMs.
Our methodology includes a novel "LLMs-as-a-Jury" pipeline which automates the evaluation of open-ended content.
arXiv Detail & Related papers (2024-11-09T01:38:55Z) - CulturalTeaming: AI-Assisted Interactive Red-Teaming for Challenging LLMs' (Lack of) Multicultural Knowledge [69.82940934994333]
We introduce CulturalTeaming, an interactive red-teaming system that leverages human-AI collaboration to build challenging evaluation dataset.
Our study reveals that CulturalTeaming's various modes of AI assistance support annotators in creating cultural questions.
CULTURALBENCH-V0.1 is a compact yet high-quality evaluation dataset with users' red-teaming attempts.
arXiv Detail & Related papers (2024-04-10T00:25:09Z) - Rethinking Model Evaluation as Narrowing the Socio-Technical Gap [47.632123167141245]
We argue that model evaluation practices must take on a critical task to cope with the challenges and responsibilities brought by this homogenization.<n>We urge the community to develop evaluation methods based on real-world contexts and human requirements.
arXiv Detail & Related papers (2023-06-01T00:01:43Z) - Heterogeneous Value Alignment Evaluation for Large Language Models [91.96728871418]
Large Language Models (LLMs) have made it crucial to align their values with those of humans.
We propose a Heterogeneous Value Alignment Evaluation (HVAE) system to assess the success of aligning LLMs with heterogeneous values.
arXiv Detail & Related papers (2023-05-26T02:34:20Z) - Towards a multi-stakeholder value-based assessment framework for
algorithmic systems [76.79703106646967]
We develop a value-based assessment framework that visualizes closeness and tensions between values.
We give guidelines on how to operationalize them, while opening up the evaluation and deliberation process to a wide range of stakeholders.
arXiv Detail & Related papers (2022-05-09T19:28:32Z) - Towards Quantifiable Dialogue Coherence Evaluation [126.55560816209756]
Quantifiable Dialogue Coherence Evaluation (QuantiDCE) is a novel framework aiming to train a quantifiable dialogue coherence metric.
QuantiDCE includes two training stages, Multi-Level Ranking (MLR) pre-training and Knowledge Distillation (KD) fine-tuning.
Experimental results show that the model trained by QuantiDCE presents stronger correlations with human judgements than the other state-of-the-art metrics.
arXiv Detail & Related papers (2021-06-01T14:11:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.