Action Dubber: Timing Audible Actions via Inflectional Flow
- URL: http://arxiv.org/abs/2506.13320v1
- Date: Mon, 16 Jun 2025 10:09:32 GMT
- Title: Action Dubber: Timing Audible Actions via Inflectional Flow
- Authors: Wenlong Wan, Weiying Zheng, Tianyi Xiang, Guiqing Li, Shengfeng He,
- Abstract summary: We introduce the task of Audible Action Temporal localization.<n>It aims to identify the audible-temporal coordinates of audible actions.<n>It is based on the premise that key actions are driven by inflectional movements.
- Score: 27.978450110521486
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce the task of Audible Action Temporal Localization, which aims to identify the spatio-temporal coordinates of audible movements. Unlike conventional tasks such as action recognition and temporal action localization, which broadly analyze video content, our task focuses on the distinct kinematic dynamics of audible actions. It is based on the premise that key actions are driven by inflectional movements; for example, collisions that produce sound often involve abrupt changes in motion. To capture this, we propose $TA^{2}Net$, a novel architecture that estimates inflectional flow using the second derivative of motion to determine collision timings without relying on audio input. $TA^{2}Net$ also integrates a self-supervised spatial localization strategy during training, combining contrastive learning with spatial analysis. This dual design improves temporal localization accuracy and simultaneously identifies sound sources within video frames. To support this task, we introduce a new benchmark dataset, $Audible623$, derived from Kinetics and UCF101 by removing non-essential vocalization subsets. Extensive experiments confirm the effectiveness of our approach on $Audible623$ and show strong generalizability to other domains, such as repetitive counting and sound source localization. Code and dataset are available at https://github.com/WenlongWan/Audible623.
Related papers
- Multi-Timescale Motion-Decoupled Spiking Transformer for Audio-Visual Zero-Shot Learning [73.7808110878037]
This paper proposes a novel dual-stream Multi-Timescale Motion-Decoupled Spiking Transformer (MDST++)<n>By converting RGB images to events, our method captures motion information more accurately and mitigates background scene biases.<n>Our experiments validate the effectiveness of MDST++, demonstrating their consistent superiority over state-of-the-art methods on mainstream benchmarks.
arXiv Detail & Related papers (2025-05-26T13:06:01Z) - FDDet: Frequency-Decoupling for Boundary Refinement in Temporal Action Detection [4.015022008487465]
Large-scale pre-trained video encoders tend to introduce background clutter and irrelevant semantics, leading to context confusion and boundaries.<n>We propose a frequency-aware decoupling network that improves action discriminability by filtering out noisy semantics captured by pre-trained models.<n>Our method achieves state-of-the-art performance on temporal action detection benchmarks.
arXiv Detail & Related papers (2025-04-01T10:57:37Z) - An Efficient Temporary Deepfake Location Approach Based Embeddings for
Partially Spoofed Audio Detection [4.055489363682199]
We propose a fine-grained partially spoofed audio detection method, namely Temporal Deepfake Location (TDL)
Our approach involves two novel parts: embedding similarity module and temporal convolution operation.
Our method outperform baseline models in ASVspoof 2019 Partial Spoof dataset and demonstrate superior performance even in the crossdataset scenario.
arXiv Detail & Related papers (2023-09-06T14:29:29Z) - DCASE 2021 Task 3: Spectrotemporally-aligned Features for Polyphonic
Sound Event Localization and Detection [16.18806719313959]
We propose a novel feature called spatial cue-augmented log-spectrogram (SALSA) with exact time-frequency mapping between the signal power and the source direction-of-arrival.
We show that the deep learning-based models trained on this new feature outperformed the DCASE challenge baseline by a large margin.
arXiv Detail & Related papers (2021-06-29T09:18:30Z) - SoundDet: Polyphonic Sound Event Detection and Localization from Raw
Waveform [48.68714598985078]
SoundDet is an end-to-end trainable and light-weight framework for polyphonic moving sound event detection and localization.
SoundDet directly consumes the raw, multichannel waveform and treats the temporal sound event as a complete sound-object" to be detected.
A dense sound proposal event map is then constructed to handle the challenges of predicting events with large varying temporal duration.
arXiv Detail & Related papers (2021-06-13T11:43:41Z) - Unsupervised Sound Localization via Iterative Contrastive Learning [106.56167882750792]
We propose an iterative contrastive learning framework that requires no data annotations.
We then use the pseudo-labels to learn the correlation between the visual and audio signals sampled from the same video.
Our iterative strategy gradually encourages the localization of the sounding objects and reduces the correlation between the non-sounding regions and the reference audio.
arXiv Detail & Related papers (2021-04-01T07:48:29Z) - Weakly Supervised Temporal Action Localization Through Learning Explicit
Subspaces for Action and Context [151.23835595907596]
Methods learn to localize temporal starts and ends of action instances in a video under only video-level supervision.
We introduce a framework that learns two feature subspaces respectively for actions and their context.
The proposed approach outperforms state-of-the-art WS-TAL methods on three benchmarks.
arXiv Detail & Related papers (2021-03-30T08:26:53Z) - Exploiting Attention-based Sequence-to-Sequence Architectures for Sound
Event Localization [113.19483349876668]
This paper proposes a novel approach to sound event localization by utilizing an attention-based sequence-to-sequence model.
It yields superior localization performance compared to state-of-the-art methods in both anechoic and reverberant conditions.
arXiv Detail & Related papers (2021-02-28T07:52:20Z) - Data Fusion for Audiovisual Speaker Localization: Extending Dynamic
Stream Weights to the Spatial Domain [103.3388198420822]
Esting the positions of multiple speakers can be helpful for tasks like automatic speech recognition or speaker diarization.
This paper proposes a novel audiovisual data fusion framework for speaker localization by assigning individual dynamic stream weights to specific regions.
A performance evaluation using audiovisual recordings yields promising results, with the proposed fusion approach outperforming all baseline models.
arXiv Detail & Related papers (2021-02-23T09:59:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.