NTU Speechlab LLM-Based Multilingual ASR System for Interspeech MLC-SLM Challenge 2025
- URL: http://arxiv.org/abs/2506.13339v2
- Date: Fri, 04 Jul 2025 04:13:19 GMT
- Title: NTU Speechlab LLM-Based Multilingual ASR System for Interspeech MLC-SLM Challenge 2025
- Authors: Yizhou Peng, Bin Wang, Yi-Wen Chao, Ziyang Ma, Haoyang Zhang, Hexin Liu, Xie Chen, Eng Siong Chng,
- Abstract summary: This report details the NTU Speechlab system developed for the Interspeech 2025 Multilingual Conversational Speech and Language Model (MLC-SLM) Challenge (Task I)<n>We present comprehensive analyses of our multilingual automatic speech recognition system, highlighting key advancements in model architecture, data selection, and training strategies.
- Score: 24.056321452209666
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This report details the NTU Speechlab system developed for the Interspeech 2025 Multilingual Conversational Speech and Language Model (MLC-SLM) Challenge (Task I), where we achieved 5th place. We present comprehensive analyses of our multilingual automatic speech recognition system, highlighting key advancements in model architecture, data selection, and training strategies. In particular, language-specific prompts and model averaging techniques were instrumental in boosting system performance across diverse languages. Compared to the initial baseline system, our final model reduced the average Mix Error Rate from 20.2% to 10.6%, representing an absolute improvement of 9.6% (a relative improvement of 48%) on the evaluation set. Our results demonstrate the effectiveness of our approach and offer practical insights for future Speech Large Language Models.
Related papers
- Bi-directional Context-Enhanced Speech Large Language Models for Multilingual Conversational ASR [23.285609467633865]
This paper introduces the integration of language-specific bi-directional context into a speech large language model (SLLM) to improve multilingual continuous conversational automatic speech recognition (ASR)<n>We propose a character-level contextual masking strategy during training, which randomly removes portions of the context to enhance robustness and better emulate the flawed transcriptions that may occur during inference.
arXiv Detail & Related papers (2025-06-16T12:03:23Z) - Seewo's Submission to MLC-SLM: Lessons learned from Speech Reasoning Language Models [4.917936997225074]
Seewo's systems for both tracks of the Multilingual Conversational Speech Language Model Challenge (MLC-SLM)<n>We introduce a multi-stage training pipeline that explicitly enhances reasoning and self-correction in speech language models for ASR.
arXiv Detail & Related papers (2025-06-16T09:42:05Z) - Efficient Multilingual ASR Finetuning via LoRA Language Experts [59.27778147311189]
This paper proposes an efficient finetuning framework for customized multilingual ASR via prepared LoRA language experts based on Whisper.<n>Through LoRA expert fusion or knowledge distillation, our approach achieves better recognition performance on target languages than standard fine-tuning methods.<n> Experimental results demonstrate that the proposed models yield approximately 10% and 15% relative performance gains in language-aware and language-agnostic scenarios.
arXiv Detail & Related papers (2025-06-11T07:06:27Z) - Leveraging LLM and Self-Supervised Training Models for Speech Recognition in Chinese Dialects: A Comparative Analysis [4.774607166378613]
Self-supervised pre-training, combined with large language models (LLM), can effectively enhance ASR performance in low-resource scenarios.<n>We pre-train a Data2vec2 model on 300,000 hours of unlabeled dialect and accented speech data and do alignment training on a supervised dataset of 40,000 hours.
arXiv Detail & Related papers (2025-05-27T12:50:55Z) - CODEOFCONDUCT at Multilingual Counterspeech Generation: A Context-Aware Model for Robust Counterspeech Generation in Low-Resource Languages [1.9263811967110864]
This paper introduces a context-aware model for robust counterspeech generation, which achieved significant success in the MCG-COLING-2025 shared task.<n>By leveraging a simulated annealing algorithm fine-tuned on multilingual datasets, the model generates factually accurate responses to hate speech.<n>We demonstrate state-of-the-art performance across four languages, with our system ranking first for Basque, second for Italian, and third for both English and Spanish.
arXiv Detail & Related papers (2025-01-01T03:36:31Z) - Enhancing Multilingual ASR for Unseen Languages via Language Embedding Modeling [50.62091603179394]
Whisper, one of the most advanced ASR models, handles 99 languages effectively.<n>However, Whisper struggles with unseen languages, those not included in its pre-training.<n>We propose methods that exploit these relationships to enhance ASR performance on unseen languages.
arXiv Detail & Related papers (2024-12-21T04:05:43Z) - An Initial Investigation of Language Adaptation for TTS Systems under Low-resource Scenarios [76.11409260727459]
This paper explores the language adaptation capability of ZMM-TTS, a recent SSL-based multilingual TTS system.
We demonstrate that the similarity in phonetics between the pre-training and target languages, as well as the language category, affects the target language's adaptation performance.
arXiv Detail & Related papers (2024-06-13T08:16:52Z) - ComSL: A Composite Speech-Language Model for End-to-End Speech-to-Text
Translation [79.66359274050885]
We present ComSL, a speech-language model built atop a composite architecture of public pretrained speech-only and language-only models.
Our approach has demonstrated effectiveness in end-to-end speech-to-text translation tasks.
arXiv Detail & Related papers (2023-05-24T07:42:15Z) - From English to More Languages: Parameter-Efficient Model Reprogramming
for Cross-Lingual Speech Recognition [50.93943755401025]
We propose a new parameter-efficient learning framework based on neural model reprogramming for cross-lingual speech recognition.
We design different auxiliary neural architectures focusing on learnable pre-trained feature enhancement.
Our methods outperform existing ASR tuning architectures and their extension with self-supervised losses.
arXiv Detail & Related papers (2023-01-19T02:37:56Z) - Exploring Teacher-Student Learning Approach for Multi-lingual
Speech-to-Intent Classification [73.5497360800395]
We develop an end-to-end system that supports multiple languages.
We exploit knowledge from a pre-trained multi-lingual natural language processing model.
arXiv Detail & Related papers (2021-09-28T04:43:11Z) - Unsupervised Cross-lingual Representation Learning for Speech
Recognition [63.85924123692923]
XLSR learns cross-lingual speech representations by pretraining a single model from the raw waveform of speech in multiple languages.
We build on wav2vec 2.0 which is trained by solving a contrastive task over masked latent speech representations.
Experiments show that cross-lingual pretraining significantly outperforms monolingual pretraining.
arXiv Detail & Related papers (2020-06-24T18:25:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.