Delving Into the Psychology of Machines: Exploring the Structure of Self-Regulated Learning via LLM-Generated Survey Responses
- URL: http://arxiv.org/abs/2506.13384v1
- Date: Mon, 16 Jun 2025 11:48:58 GMT
- Title: Delving Into the Psychology of Machines: Exploring the Structure of Self-Regulated Learning via LLM-Generated Survey Responses
- Authors: Leonie V. D. E. Vogelsmeier, Eduardo Oliveira, Kamila Misiejuk, Sonsoles López-Pernas, Mohammed Saqr,
- Abstract summary: Large language models (LLMs) offer the potential to simulate human-like responses and behaviors.<n>LLMs could be used to test intervention scenarios, refine theoretical models, augment sparse datasets, and represent hard-to-reach populations.<n>We analyzed item distributions, the psychological network of the theoretical SRL dimensions, and psychometric validity based on the latent factor structure.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) offer the potential to simulate human-like responses and behaviors, creating new opportunities for psychological science. In the context of self-regulated learning (SRL), if LLMs can reliably simulate survey responses at scale and speed, they could be used to test intervention scenarios, refine theoretical models, augment sparse datasets, and represent hard-to-reach populations. However, the validity of LLM-generated survey responses remains uncertain, with limited research focused on SRL and existing studies beyond SRL yielding mixed results. Therefore, in this study, we examined LLM-generated responses to the 44-item Motivated Strategies for Learning Questionnaire (MSLQ; Pintrich \& De Groot, 1990), a widely used instrument assessing students' learning strategies and academic motivation. Particularly, we used the LLMs GPT-4o, Claude 3.7 Sonnet, Gemini 2 Flash, LLaMA 3.1-8B, and Mistral Large. We analyzed item distributions, the psychological network of the theoretical SRL dimensions, and psychometric validity based on the latent factor structure. Our results suggest that Gemini 2 Flash was the most promising LLM, showing considerable sampling variability and producing underlying dimensions and theoretical relationships that align with prior theory and empirical findings. At the same time, we observed discrepancies and limitations, underscoring both the potential and current constraints of using LLMs for simulating psychological survey data and applying it in educational contexts.
Related papers
- If an LLM Were a Character, Would It Know Its Own Story? Evaluating Lifelong Learning in LLMs [55.8331366739144]
We introduce LIFESTATE-BENCH, a benchmark designed to assess lifelong learning in large language models (LLMs)<n>Our fact checking evaluation probes models' self-awareness, episodic memory retrieval, and relationship tracking, across both parametric and non-parametric approaches.
arXiv Detail & Related papers (2025-03-30T16:50:57Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcher is a novel two-stage outcome-based RL approach designed to enhance the search capabilities of Large Language Models.<n>Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start.<n>Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
arXiv Detail & Related papers (2025-03-07T17:14:44Z) - Simulating and Analysing Human Survey Responses with Large Language Models: A Case Study in Energy Stated Preference [4.672157041593765]
Stated preference (SP) surveys help researchers understand how individuals make trade-offs in hypothetical, potentially futuristic, scenarios.<n>This study investigates large language models (LLMs) for simulating consumer choices in energy-related SP surveys.
arXiv Detail & Related papers (2025-03-07T10:37:31Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains.<n>Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities.<n>We propose a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning.
arXiv Detail & Related papers (2025-02-04T17:26:58Z) - LLM-Mirror: A Generated-Persona Approach for Survey Pre-Testing [0.0]
We investigate whether providing respondents' prior information can replicate both statistical distributions and individual decision-making patterns.<n>We also introduce the concept of the LLM-Mirror, user personas generated by supplying respondent-specific information to the LLM.<n>Our findings show that: (1) PLS-SEM analysis shows LLM-generated responses align with human responses, (2) LLMs are capable of reproducing individual human responses, and (3) LLM-Mirror responses closely follow human responses at the individual level.
arXiv Detail & Related papers (2024-12-04T09:39:56Z) - Simulating Tabular Datasets through LLMs to Rapidly Explore Hypotheses about Real-World Entities [9.235910374587734]
This paper explores the potential to quickly prototype hypotheses through applying LLMs to estimate properties of concrete entities.<n>The hope is to allow sifting through hypotheses more quickly through collaboration between human and machine.
arXiv Detail & Related papers (2024-11-27T05:48:44Z) - Explaining Large Language Models Decisions Using Shapley Values [1.223779595809275]
Large language models (LLMs) have opened up exciting possibilities for simulating human behavior and cognitive processes.
However, the validity of utilizing LLMs as stand-ins for human subjects remains uncertain.
This paper presents a novel approach based on Shapley values to interpret LLM behavior and quantify the relative contribution of each prompt component to the model's output.
arXiv Detail & Related papers (2024-03-29T22:49:43Z) - Comprehensive Reassessment of Large-Scale Evaluation Outcomes in LLMs: A Multifaceted Statistical Approach [64.42462708687921]
Evaluations have revealed that factors such as scaling, training types, architectures and other factors profoundly impact the performance of LLMs.
Our study embarks on a thorough re-examination of these LLMs, targeting the inadequacies in current evaluation methods.
This includes the application of ANOVA, Tukey HSD tests, GAMM, and clustering technique.
arXiv Detail & Related papers (2024-03-22T14:47:35Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - Revisiting the Reliability of Psychological Scales on Large Language Models [62.57981196992073]
This study aims to determine the reliability of applying personality assessments to Large Language Models.
Analysis of 2,500 settings per model, including GPT-3.5, GPT-4, Gemini-Pro, and LLaMA-3.1, reveals that various LLMs show consistency in responses to the Big Five Inventory.
arXiv Detail & Related papers (2023-05-31T15:03:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.