AdaVideoRAG: Omni-Contextual Adaptive Retrieval-Augmented Efficient Long Video Understanding
- URL: http://arxiv.org/abs/2506.13589v2
- Date: Wed, 18 Jun 2025 02:46:20 GMT
- Title: AdaVideoRAG: Omni-Contextual Adaptive Retrieval-Augmented Efficient Long Video Understanding
- Authors: Zhucun Xue, Jiangning Zhang, Xurong Xie, Yuxuan Cai, Yong Liu, Xiangtai Li, Dacheng Tao,
- Abstract summary: AdaVideoRAG is a novel framework that adapts retrieval based on query complexity using a lightweight intent classifier.<n>Our framework employs an Omni-Knowledge Indexing module to build hierarchical databases from text (captions, ASR, OCR), visual features, and semantic graphs.<n> Experiments demonstrate improved efficiency and accuracy for long-video understanding, with seamless integration into existing MLLMs.
- Score: 73.60257070465377
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal Large Language Models (MLLMs) struggle with long videos due to fixed context windows and weak long-term dependency modeling. Existing Retrieval-Augmented Generation (RAG) methods for videos use static retrieval strategies, leading to inefficiencies for simple queries and information loss for complex tasks. To address this, we propose AdaVideoRAG, a novel framework that dynamically adapts retrieval granularity based on query complexity using a lightweight intent classifier. Our framework employs an Omni-Knowledge Indexing module to build hierarchical databases from text (captions, ASR, OCR), visual features, and semantic graphs, enabling optimal resource allocation across tasks. We also introduce the HiVU benchmark for comprehensive evaluation. Experiments demonstrate improved efficiency and accuracy for long-video understanding, with seamless integration into existing MLLMs. AdaVideoRAG establishes a new paradigm for adaptive retrieval in video analysis. Codes will be open-sourced at https://github.com/xzc-zju/AdaVideoRAG.
Related papers
- Reinforcement Learning Tuning for VideoLLMs: Reward Design and Data Efficiency [56.475612147721264]
We propose a dual-reward formulation that supervises both semantic and temporal reasoning through discrete and continuous reward signals.<n>We evaluate our approach across eight representative video understanding tasks, including VideoQA, Temporal Video Grounding, and Grounded VideoQA.<n>Results underscore the importance of reward design and data selection in advancing reasoning-centric video understanding with MLLMs.
arXiv Detail & Related papers (2025-06-02T17:28:26Z) - Enhancing Subsequent Video Retrieval via Vision-Language Models (VLMs) [3.783822944546971]
Vision-language models (VLMs) excel in representation learning, but struggle with adaptive, time-sensitive video retrieval.<n>This paper introduces a novel framework that combines vector similarity search with graph-based data structures.
arXiv Detail & Related papers (2025-03-21T01:11:14Z) - VideoRAG: Retrieval-Augmented Generation with Extreme Long-Context Videos [25.770675590118547]
VideoRAG is the first retrieval-augmented generation framework specifically designed for processing and understanding extremely long-context videos.<n>Our core innovation lies in its dual-channel architecture that seamlessly integrates (i) graph-based textual knowledge grounding for capturing cross-video semantic relationships, and (ii) multi-modal context encoding for efficiently preserving visual features.
arXiv Detail & Related papers (2025-02-03T17:30:19Z) - VideoRAG: Retrieval-Augmented Generation over Video Corpus [57.68536380621672]
VideoRAG is a framework that dynamically retrieves videos based on their relevance with queries.<n>VideoRAG is powered by recent Large Video Language Models (LVLMs)<n>We experimentally validate the effectiveness of VideoRAG, showcasing that it is superior to relevant baselines.
arXiv Detail & Related papers (2025-01-10T11:17:15Z) - Realizing Video Summarization from the Path of Language-based Semantic Understanding [19.825666473712197]
We propose a novel video summarization framework inspired by the Mixture of Experts (MoE) paradigm.
Our approach integrates multiple VideoLLMs to generate comprehensive and coherent textual summaries.
arXiv Detail & Related papers (2024-10-06T15:03:22Z) - Needle In A Video Haystack: A Scalable Synthetic Evaluator for Video MLLMs [20.168429351519055]
Video understanding is a crucial next step for multimodal large language models (LMLMs)<n>We propose VideoNIAH (Video Needle In A Haystack), a benchmark construction framework through synthetic video generation.<n>We conduct a comprehensive evaluation of both proprietary and open-source models, uncovering significant differences in their video understanding capabilities.
arXiv Detail & Related papers (2024-06-13T17:50:05Z) - How Good is my Video LMM? Complex Video Reasoning and Robustness Evaluation Suite for Video-LMMs [98.37571997794072]
We present the Complex Video Reasoning and Robustness Evaluation Suite (CVRR-ES)
CVRR-ES comprehensively assesses the performance of Video-LMMs across 11 diverse real-world video dimensions.
Our findings provide valuable insights for building the next generation of human-centric AI systems.
arXiv Detail & Related papers (2024-05-06T17:59:45Z) - Scaling Up Video Summarization Pretraining with Large Language Models [73.74662411006426]
We introduce an automated and scalable pipeline for generating a large-scale video summarization dataset.
We analyze the limitations of existing approaches and propose a new video summarization model that effectively addresses them.
Our work also presents a new benchmark dataset that contains 1200 long videos each with high-quality summaries annotated by professionals.
arXiv Detail & Related papers (2024-04-04T11:59:06Z) - LongVLM: Efficient Long Video Understanding via Large Language Models [55.813206751150716]
LongVLM is a simple yet powerful VideoLLM for long video understanding.
We encode video representations that incorporate both local and global information.
Our model produces more precise responses for long video understanding.
arXiv Detail & Related papers (2024-04-04T11:33:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.