CAMS: A CityGPT-Powered Agentic Framework for Urban Human Mobility Simulation
- URL: http://arxiv.org/abs/2506.13599v1
- Date: Mon, 16 Jun 2025 15:24:07 GMT
- Title: CAMS: A CityGPT-Powered Agentic Framework for Urban Human Mobility Simulation
- Authors: Yuwei Du, Jie Feng, Jian Yuan, Yong Li,
- Abstract summary: textbfCAMS is an agentic framework that leverages the language based urban foundation model to simulate human mobility in urban space.<n>textbfCAMS achieves superior performance without relying on externally provided geospatial information.
- Score: 9.907406552578607
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human mobility simulation plays a crucial role in various real-world applications. Recently, to address the limitations of traditional data-driven approaches, researchers have explored leveraging the commonsense knowledge and reasoning capabilities of large language models (LLMs) to accelerate human mobility simulation. However, these methods suffer from several critical shortcomings, including inadequate modeling of urban spaces and poor integration with both individual mobility patterns and collective mobility distributions. To address these challenges, we propose \textbf{C}ityGPT-Powered \textbf{A}gentic framework for \textbf{M}obility \textbf{S}imulation (\textbf{CAMS}), an agentic framework that leverages the language based urban foundation model to simulate human mobility in urban space. \textbf{CAMS} comprises three core modules, including MobExtractor to extract template mobility patterns and synthesize new ones based on user profiles, GeoGenerator to generate anchor points considering collective knowledge and generate candidate urban geospatial knowledge using an enhanced version of CityGPT, TrajEnhancer to retrieve spatial knowledge based on mobility patterns and generate trajectories with real trajectory preference alignment via DPO. Experiments on real-world datasets show that \textbf{CAMS} achieves superior performance without relying on externally provided geospatial information. Moreover, by holistically modeling both individual mobility patterns and collective mobility constraints, \textbf{CAMS} generates more realistic and plausible trajectories. In general, \textbf{CAMS} establishes a new paradigm that integrates the agentic framework with urban-knowledgeable LLMs for human mobility simulation.
Related papers
- Incorporating LLMs for Large-Scale Urban Complex Mobility Simulation [0.04517077427559345]
This study presents an innovative approach to urban mobility simulation by integrating a Large Language Model (LLM) with Agent-Based Modeling (ABM)<n>Unlike traditional rule-based ABM, the proposed framework leverages LLM to enhance agent diversity and realism.<n>Using real-world data, the simulation models individual behaviors and large-scale mobility patterns in Taipei City.
arXiv Detail & Related papers (2025-05-28T01:54:28Z) - TrajMoE: Spatially-Aware Mixture of Experts for Unified Human Mobility Modeling [10.338272381612112]
We propose TrajMoE, a unified and scalable model for cross-city human mobility modeling.<n>TrajMoE addresses two key challenges: (1) inconsistent spatial semantics across cities, and (2) diverse urban mobility patterns.<n>Extensive experiments demonstrate that TrajMoE achieves up to 27% relative improvement over competitive mobility foundation models.
arXiv Detail & Related papers (2025-05-24T12:17:47Z) - Learning Universal Human Mobility Patterns with a Foundation Model for Cross-domain Data Fusion [11.332722237426987]
We present a foundation model framework for universal human mobility.<n>We leverage cross-domain data fusion and large language models to address limitations.<n>Our framework demonstrates adaptability through domain transfer techniques.
arXiv Detail & Related papers (2025-03-20T01:41:28Z) - TrajLLM: A Modular LLM-Enhanced Agent-Based Framework for Realistic Human Trajectory Simulation [3.8106509573548286]
This work leverages Large Language Models (LLMs) to simulate human mobility, addressing challenges like high costs and privacy concerns in traditional models.<n>Our hierarchical framework integrates persona generation, activity selection, and destination prediction, using real-world demographic and psychological data.
arXiv Detail & Related papers (2025-02-26T00:13:26Z) - Collaborative Imputation of Urban Time Series through Cross-city Meta-learning [54.438991949772145]
We propose a novel collaborative imputation paradigm leveraging meta-learned implicit neural representations (INRs)<n>We then introduce a cross-city collaborative learning scheme through model-agnostic meta learning.<n>Experiments on a diverse urban dataset from 20 global cities demonstrate our model's superior imputation performance and generalizability.
arXiv Detail & Related papers (2025-01-20T07:12:40Z) - OmniRe: Omni Urban Scene Reconstruction [78.99262488964423]
We introduce OmniRe, a comprehensive system for creating high-fidelity digital twins of dynamic real-world scenes from on-device logs.<n>Our approach builds scene graphs on 3DGS and constructs multiple Gaussian representations in canonical spaces that model various dynamic actors.
arXiv Detail & Related papers (2024-08-29T17:56:33Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - MobilityGPT: Enhanced Human Mobility Modeling with a GPT model [12.01839817432357]
We reformat human mobility modeling as an autoregressive generation task to address these issues.
We propose a geospatially-aware generative model, MobilityGPT, to ensure its controllable generation.
Experiments on real-world datasets demonstrate MobilityGPT's superior performance over state-of-the-art methods.
arXiv Detail & Related papers (2024-02-05T18:22:21Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
Key element of effective simulation is the incorporation of realistic traffic models that align with human knowledge.
This study identifies two main challenges: capturing the nuances of human preferences on realism and the unification of diverse traffic simulation models.
arXiv Detail & Related papers (2023-09-01T19:29:53Z) - Continuous Trajectory Generation Based on Two-Stage GAN [50.55181727145379]
We propose a novel two-stage generative adversarial framework to generate the continuous trajectory on the road network.
Specifically, we build the generator under the human mobility hypothesis of the A* algorithm to learn the human mobility behavior.
For the discriminator, we combine the sequential reward with the mobility yaw reward to enhance the effectiveness of the generator.
arXiv Detail & Related papers (2023-01-16T09:54:02Z) - Transformer Inertial Poser: Attention-based Real-time Human Motion
Reconstruction from Sparse IMUs [79.72586714047199]
We propose an attention-based deep learning method to reconstruct full-body motion from six IMU sensors in real-time.
Our method achieves new state-of-the-art results both quantitatively and qualitatively, while being simple to implement and smaller in size.
arXiv Detail & Related papers (2022-03-29T16:24:52Z) - Learning to Move with Affordance Maps [57.198806691838364]
The ability to autonomously explore and navigate a physical space is a fundamental requirement for virtually any mobile autonomous agent.
Traditional SLAM-based approaches for exploration and navigation largely focus on leveraging scene geometry.
We show that learned affordance maps can be used to augment traditional approaches for both exploration and navigation, providing significant improvements in performance.
arXiv Detail & Related papers (2020-01-08T04:05:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.