PeakWeather: MeteoSwiss Weather Station Measurements for Spatiotemporal Deep Learning
- URL: http://arxiv.org/abs/2506.13652v1
- Date: Mon, 16 Jun 2025 16:16:42 GMT
- Title: PeakWeather: MeteoSwiss Weather Station Measurements for Spatiotemporal Deep Learning
- Authors: Daniele Zambon, Michele Cattaneo, Ivan Marisca, Jonas Bhend, Daniele Nerini, Cesare Alippi,
- Abstract summary: We introduce PeakWeather, a high-quality dataset of surface weather observations collected every 10 minutes over more than 8 years.<n>The dataset includes a diverse set of meteorological variables from 302 station locations distributed across Switzerland's complex topography.<n>PeakWeather serves as a real-world benchmark to advance both foundational machine learning research, meteorology, and sensor-based applications.
- Score: 19.620793566349185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate weather forecasts are essential for supporting a wide range of activities and decision-making processes, as well as mitigating the impacts of adverse weather events. While traditional numerical weather prediction (NWP) remains the cornerstone of operational forecasting, machine learning is emerging as a powerful alternative for fast, flexible, and scalable predictions. We introduce PeakWeather, a high-quality dataset of surface weather observations collected every 10 minutes over more than 8 years from the ground stations of the Federal Office of Meteorology and Climatology MeteoSwiss's measurement network. The dataset includes a diverse set of meteorological variables from 302 station locations distributed across Switzerland's complex topography and is complemented with topographical indices derived from digital height models for context. Ensemble forecasts from the currently operational high-resolution NWP model are provided as a baseline forecast against which to evaluate new approaches. The dataset's richness supports a broad spectrum of spatiotemporal tasks, including time series forecasting at various scales, graph structure learning, imputation, and virtual sensing. As such, PeakWeather serves as a real-world benchmark to advance both foundational machine learning research, meteorology, and sensor-based applications.
Related papers
- Advancing Meteorological Forecasting: AI-based Approach to Synoptic Weather Map Analysis [3.686808512438363]
Our study proposes a novel preprocessing method and convolutional autoencoder model to improve the interpretation of synoptic weather maps.
This model could recognize historical synoptic weather maps that nearly match current atmospheric conditions.
arXiv Detail & Related papers (2024-11-08T07:46:50Z) - FuXi Weather: A data-to-forecast machine learning system for global weather [13.052716094161886]
FuXi Weather is a machine learning weather forecasting system that assimilates data from multiple satellites.
FuXi Weather consistently outperforms ECMWF HRES in observation-sparse regions, such as central Africa.
arXiv Detail & Related papers (2024-08-10T07:42:01Z) - Aardvark weather: end-to-end data-driven weather forecasting [30.219727555662267]
Aardvark Weather is an end-to-end data-driven weather prediction system.
It ingests raw observations and outputs global gridded forecasts and local station forecasts.
It can be optimised end-to-end to maximise performance over quantities of interest.
arXiv Detail & Related papers (2024-03-30T16:41:24Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Advancing Parsimonious Deep Learning Weather Prediction using the HEALPix Mesh [3.2785715577154595]
We present a parsimonious deep learning weather prediction model to forecast seven atmospheric variables with 3-h time resolution for up to one-year lead times on a 110-km global mesh.
In comparison to state-of-the-art (SOTA) machine learning (ML) weather forecast models, such as Pangu-Weather and GraphCast, our DLWP-HPX model uses coarser resolution and far fewer prognostic variables.
arXiv Detail & Related papers (2023-09-11T16:25:48Z) - Federated Prompt Learning for Weather Foundation Models on Devices [37.88417074427373]
On-device intelligence for weather forecasting uses local deep learning models to analyze weather patterns without centralized cloud computing.
This paper propose Federated Prompt Learning for Weather Foundation Models on Devices (FedPoD)
FedPoD enables devices to obtain highly customized models while maintaining communication efficiency.
arXiv Detail & Related papers (2023-05-23T16:59:20Z) - Weather2K: A Multivariate Spatio-Temporal Benchmark Dataset for
Meteorological Forecasting Based on Real-Time Observation Data from Ground
Weather Stations [9.061222268562249]
This paper presents a new benchmark dataset named Weather2K.
It aims to make up for the deficiencies of existing weather forecasting datasets in terms of real-time, reliability, and diversity.
The data is hourly collected from 2,130 ground weather stations covering an area of 6 million square kilometers.
arXiv Detail & Related papers (2023-02-21T07:46:08Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - A case study of spatiotemporal forecasting techniques for weather forecasting [4.347494885647007]
The correlations of real-world processes aretemporal, and the data generated by them exhibits both spatial and temporal evolution.
Time series-based models are a viable alternative to numerical forecasts.
We show that decompositiontemporal prediction models reduced computational costs while improving accuracy.
arXiv Detail & Related papers (2022-09-29T13:47:02Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.