Attribution-guided Pruning for Compression, Circuit Discovery, and Targeted Correction in LLMs
- URL: http://arxiv.org/abs/2506.13727v1
- Date: Mon, 16 Jun 2025 17:38:36 GMT
- Title: Attribution-guided Pruning for Compression, Circuit Discovery, and Targeted Correction in LLMs
- Authors: Sayed Mohammad Vakilzadeh Hatefi, Maximilian Dreyer, Reduan Achtibat, Patrick Kahardipraja, Thomas Wiegand, Wojciech Samek, Sebastian Lapuschkin,
- Abstract summary: Large Language Models (LLMs) are central to many contemporary AI applications.<n>Recent works in eXplainable AI (XAI) suggest that interpretability can also enable model compression.
- Score: 15.23174472320989
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Language Models (LLMs) are central to many contemporary AI applications, yet their extensive parameter counts pose significant challenges for deployment in memory- and compute-constrained environments. Recent works in eXplainable AI (XAI), particularly on attribution methods, suggest that interpretability can also enable model compression by identifying and removing components irrelevant to inference. In this paper, we leverage Layer-wise Relevance Propagation (LRP) to perform attribution-guided pruning of LLMs. While LRP has shown promise in structured pruning for vision models, we extend it to unstructured pruning in LLMs and demonstrate that it can substantially reduce model size with minimal performance loss. Our method is especially effective in extracting task-relevant subgraphs -- so-called ``circuits'' -- which can represent core functions (e.g., indirect object identification). Building on this, we introduce a technique for model correction, by selectively removing circuits responsible for spurious behaviors (e.g., toxic outputs). All in all, we gather these techniques as a uniform holistic framework and showcase its effectiveness and limitations through extensive experiments for compression, circuit discovery and model correction on Llama and OPT models, highlighting its potential for improving both model efficiency and safety. Our code is publicly available at https://github.com/erfanhatefi/SparC3.
Related papers
- CoLA: Collaborative Low-Rank Adaptation [3.421904493396495]
Fine-tuning a pre-trained model for specific tasks achieves strong performance; however, it is computationally expensive and inefficient.<n>LoRA, in particular, has proven effective, but its application to multi-task scenarios is limited by interference between tasks.<n>We propose CoLA, a more flexible LoRA architecture and three collaborative strategies to enhance performance by better utilizing the quantitative relationships between $A$ and $B$.
arXiv Detail & Related papers (2025-05-21T12:46:42Z) - DeeCLIP: A Robust and Generalizable Transformer-Based Framework for Detecting AI-Generated Images [14.448350657613368]
DeeCLIP is a novel framework for detecting AI-generated images.<n>It incorporates DeeFuser, a fusion module that combines high-level and low-level features.<n>We trained exclusively on 4-class ProGAN data, DeeCLIP achieves an average accuracy of 89.90%.
arXiv Detail & Related papers (2025-04-28T15:06:28Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.<n>We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.<n>Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - Language Models as Zero-shot Lossless Gradient Compressors: Towards General Neural Parameter Prior Models [56.00251589760559]
Large language models (LLMs) can act as gradient priors in a zero-shot setting.<n>We introduce LM-GC, a novel method that integrates LLMs with arithmetic coding.<n>Experiments indicate that LM-GC surpasses existing state-of-the-art lossless compression methods.
arXiv Detail & Related papers (2024-09-26T13:38:33Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Tender: Accelerating Large Language Models via Tensor Decomposition and Runtime Requantization [0.6445087473595953]
Large language models (LLMs) demonstrate outstanding performance in various tasks in machine learning.
deploying LLM inference poses challenges due to the high compute and memory requirements.
We present Tender, an algorithm-hardware co-design solution that enables efficient deployment of LLM inference at low precision.
arXiv Detail & Related papers (2024-06-16T09:51:55Z) - SPP: Sparsity-Preserved Parameter-Efficient Fine-Tuning for Large Language Models [53.638791265113625]
Sparsity-Preserved efficient fine-tuning method for large language models.
Code will be made available at https://github.com/Lucky-Lance/SPP.
arXiv Detail & Related papers (2024-05-25T04:55:27Z) - InferAligner: Inference-Time Alignment for Harmlessness through
Cross-Model Guidance [56.184255657175335]
We develop textbfInferAligner, a novel inference-time alignment method that utilizes cross-model guidance for harmlessness alignment.
Experimental results show that our method can be very effectively applied to domain-specific models in finance, medicine, and mathematics.
It significantly diminishes the Attack Success Rate (ASR) of both harmful instructions and jailbreak attacks, while maintaining almost unchanged performance in downstream tasks.
arXiv Detail & Related papers (2024-01-20T10:41:03Z) - Parameter-Efficient Sparsity Crafting from Dense to Mixture-of-Experts for Instruction Tuning on General Tasks [5.536630285985836]
We introduce parameter-efficient sparsity crafting (PESC)
PESC crafts dense models into sparse models using the mixture-of-experts (MoE) architecture.
Our best sparse model outperforms other sparse and dense models and exhibits superior general capabilities compared to GP3.5.
arXiv Detail & Related papers (2024-01-05T09:58:09Z) - CRaSh: Clustering, Removing, and Sharing Enhance Fine-tuning without
Full Large Language Model [22.870512676002463]
This paper focuses on Offsite-Tuning (OFT), a representative technique that transfers transformer blocks between centralized LLMs and downstream emulators.
Inspired by these observations, we propose CRaSh, involving Clustering, Removing, and Sharing, a training-free strategy to derive improved emulators from LLMs.
Our findings demonstrate a linear connectivity among these optima falling over the same basin, thereby highlighting the effectiveness of CRaSh and OFT.
arXiv Detail & Related papers (2023-10-24T03:08:58Z) - A Fair Loss Function for Network Pruning [70.35230425589592]
We introduce the performance weighted loss function, a simple modified cross-entropy loss function that can be used to limit the introduction of biases during pruning.
Experiments using the CelebA, Fitzpatrick17k and CIFAR-10 datasets demonstrate that the proposed method is a simple and effective tool.
arXiv Detail & Related papers (2022-11-18T15:17:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.