GITO: Graph-Informed Transformer Operator for Learning Complex Partial Differential Equations
- URL: http://arxiv.org/abs/2506.13906v1
- Date: Mon, 16 Jun 2025 18:35:45 GMT
- Title: GITO: Graph-Informed Transformer Operator for Learning Complex Partial Differential Equations
- Authors: Milad Ramezankhani, Janak M. Patel, Anirudh Deodhar, Dagnachew Birru,
- Abstract summary: We present a novel graph-informed transformer operator (GITO) architecture for learning complex partial differential equation systems.<n>GITO consists of two main modules: a hybrid graph transformer (HGT) and a transformer neural operator (TNO)<n> Empirical results on benchmark PDE tasks demonstrate that GITO outperforms existing transformer-based neural operators.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present a novel graph-informed transformer operator (GITO) architecture for learning complex partial differential equation systems defined on irregular geometries and non-uniform meshes. GITO consists of two main modules: a hybrid graph transformer (HGT) and a transformer neural operator (TNO). HGT leverages a graph neural network (GNN) to encode local spatial relationships and a transformer to capture long-range dependencies. A self-attention fusion layer integrates the outputs of the GNN and transformer to enable more expressive feature learning on graph-structured data. TNO module employs linear-complexity cross-attention and self-attention layers to map encoded input functions to predictions at arbitrary query locations, ensuring discretization invariance and enabling zero-shot super-resolution across any mesh. Empirical results on benchmark PDE tasks demonstrate that GITO outperforms existing transformer-based neural operators, paving the way for efficient, mesh-agnostic surrogate solvers in engineering applications.
Related papers
- Graded Transformers: A Symbolic-Geometric Approach to Structured Learning [0.0]
We introduce a novel class of sequence models that embed inductive biases through grading transformations on vector spaces.<n>The Graded Transformer holds transformative potential for hierarchical learning and neurosymbolic reasoning.<n>This work advances structured deep learning by fusing geometric and algebraic principles with attention mechanisms.
arXiv Detail & Related papers (2025-07-27T02:34:08Z) - LASE: Learned Adjacency Spectral Embeddings [7.612218105739107]
We learn nodal Adjacency Spectral Embeddings (ASE) from graph inputs.<n>LASE is interpretable, parameter efficient, robust to inputs with unobserved edges.<n>LASE layers combine Graph Convolutional Network (GCN) and fully-connected Graph Attention Network (GAT) modules.
arXiv Detail & Related papers (2024-12-23T17:35:19Z) - Interpretable Lightweight Transformer via Unrolling of Learned Graph Smoothness Priors [16.04850782310842]
We build interpretable and lightweight transformer-like neural networks by unrolling iterative optimization algorithms.
A normalized signal-dependent graph learning module amounts to a variant of the basic self-attention mechanism in conventional transformers.
arXiv Detail & Related papers (2024-06-06T14:01:28Z) - What Improves the Generalization of Graph Transformers? A Theoretical Dive into the Self-attention and Positional Encoding [67.59552859593985]
Graph Transformers, which incorporate self-attention and positional encoding, have emerged as a powerful architecture for various graph learning tasks.
This paper introduces first theoretical investigation of a shallow Graph Transformer for semi-supervised classification.
arXiv Detail & Related papers (2024-06-04T05:30:16Z) - Cell Graph Transformer for Nuclei Classification [78.47566396839628]
We develop a cell graph transformer (CGT) that treats nodes and edges as input tokens to enable learnable adjacency and information exchange among all nodes.
Poorly features can lead to noisy self-attention scores and inferior convergence.
We propose a novel topology-aware pretraining method that leverages a graph convolutional network (GCN) to learn a feature extractor.
arXiv Detail & Related papers (2024-02-20T12:01:30Z) - Graph Transformers without Positional Encodings [0.7252027234425334]
We introduce Eigenformer, a Graph Transformer employing a novel spectrum-aware attention mechanism cognizant of the Laplacian spectrum of the graph.
We empirically show that it achieves performance competetive with SOTA Graph Transformers on a number of standard GNN benchmarks.
arXiv Detail & Related papers (2024-01-31T12:33:31Z) - Neural Tangent Kernels Motivate Graph Neural Networks with
Cross-Covariance Graphs [94.44374472696272]
We investigate NTKs and alignment in the context of graph neural networks (GNNs)
Our results establish the theoretical guarantees on the optimality of the alignment for a two-layer GNN.
These guarantees are characterized by the graph shift operator being a function of the cross-covariance between the input and the output data.
arXiv Detail & Related papers (2023-10-16T19:54:21Z) - Supercharging Graph Transformers with Advective Diffusion [28.40109111316014]
This paper proposes AdvDIFFormer, a physics-inspired graph Transformer model designed to address this challenge.<n>We show that AdvDIFFormer has provable capability for controlling generalization error with topological shifts.<n> Empirically, the model demonstrates superiority in various predictive tasks across information networks, molecular screening and protein interactions.
arXiv Detail & Related papers (2023-10-10T08:40:47Z) - Stable and Transferable Hyper-Graph Neural Networks [95.07035704188984]
We introduce an architecture for processing signals supported on hypergraphs via graph neural networks (GNNs)
We provide a framework for bounding the stability and transferability error of GNNs across arbitrary graphs via spectral similarity.
arXiv Detail & Related papers (2022-11-11T23:44:20Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
This paper proposes a hybrid framework that integrates the advantages of leveraging detailed spatial information from CNN and the global context provided by transformer for enhanced representation learning.
The proposed approach is an end-to-end compressive image sensing method, composed of adaptive sampling and recovery.
The experimental results demonstrate the effectiveness of the dedicated transformer-based architecture for compressive sensing.
arXiv Detail & Related papers (2021-12-31T04:37:11Z) - Gophormer: Ego-Graph Transformer for Node Classification [27.491500255498845]
In this paper, we propose a novel Gophormer model which applies transformers on ego-graphs instead of full-graphs.
Specifically, Node2Seq module is proposed to sample ego-graphs as the input of transformers, which alleviates the challenge of scalability.
In order to handle the uncertainty introduced by the ego-graph sampling, we propose a consistency regularization and a multi-sample inference strategy.
arXiv Detail & Related papers (2021-10-25T16:43:32Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.