A Hybrid Neural Network -- Polynomial Series Scheme for Learning Invariant Manifolds of Discrete Dynamical Systems
- URL: http://arxiv.org/abs/2506.13950v1
- Date: Mon, 16 Jun 2025 19:42:34 GMT
- Title: A Hybrid Neural Network -- Polynomial Series Scheme for Learning Invariant Manifolds of Discrete Dynamical Systems
- Authors: Dimitrios G. Patsatzis, Nikolaos Kazantzis, Ioannis G. Kevrekidis, Constantinos Siettos,
- Abstract summary: We propose a hybrid machine learning scheme to learn, in physics-informed and numerical analysis-informed fashion.<n>The proposed scheme combines series with shallow neural networks, exploiting the complementary strengths of both approaches.<n>We demonstrate that the proposed hybrid scheme outperforms both pure approximations and standalone neural networks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a hybrid machine learning scheme to learn -- in physics-informed and numerical analysis-informed fashion -- invariant manifolds (IM) of discrete maps for constructing reduced-order models (ROMs) for dynamical systems. The proposed scheme combines polynomial series with shallow neural networks, exploiting the complementary strengths of both approaches. Polynomials enable an efficient and accurate modeling of ROMs with guaranteed local exponential convergence rate around the fixed point, where, under certain assumptions, the IM is demonstrated to be analytic. Neural networks provide approximations to more complex structures beyond the reach of the polynomials' convergence. We evaluate the efficiency of the proposed scheme using three benchmark examples, examining convergence behavior, numerical approximation accuracy, and computational training cost. Additionally, we compare the IM approximations obtained solely with neural networks and with polynomial expansions. We demonstrate that the proposed hybrid scheme outperforms both pure polynomial approximations (power series, Legendre and Chebyshev polynomials) and standalone shallow neural network approximations in terms of numerical approximation accuracy.
Related papers
- DeePoly: A High-Order Accuracy Scientific Machine Learning Framework for Function Approximation and Solving PDEs [5.483488375189695]
This work introduces a novel framework that transforms the Dee solution to a two-stage approach.<n>The strategic combination leverages the strengths of both methods.<n>This approach also serves as the open-source project also serves as the paper.
arXiv Detail & Related papers (2025-06-05T04:10:52Z) - Neural Port-Hamiltonian Differential Algebraic Equations for Compositional Learning of Electrical Networks [20.12750360095627]
We develop compositional learning algorithms for coupled dynamical systems.<n>We use neural networks to parametrize unknown terms in differential and algebraic components of a port-Hamiltonian DAE.<n>We train individual N-PHDAE models for separate grid components, before coupling them to accurately predict the behavior of larger-scale networks.
arXiv Detail & Related papers (2024-12-15T15:13:11Z) - Slow Invariant Manifolds of Singularly Perturbed Systems via
Physics-Informed Machine Learning [0.0]
We present a physics-informed machine-learning (PIML) approach for the approximation of slow invariant manifold (SIMs) of singularly perturbed systems.
We show that the proposed PIML scheme provides approximations, of equivalent or even higher accuracy, than those provided by other traditional GSPT-based methods.
A comparison of the computational costs between symbolic, automatic and numerical approximation of the required derivatives in the learning process is also provided.
arXiv Detail & Related papers (2023-09-14T14:10:22Z) - Probabilistic partition of unity networks for high-dimensional
regression problems [1.0227479910430863]
We explore the partition of unity network (PPOU-Net) model in the context of high-dimensional regression problems.
We propose a general framework focusing on adaptive dimensionality reduction.
The PPOU-Nets consistently outperform the baseline fully-connected neural networks of comparable sizes in numerical experiments.
arXiv Detail & Related papers (2022-10-06T06:01:36Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
It is shown that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
It is shown, that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
arXiv Detail & Related papers (2021-10-26T07:02:14Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
Joint network topology inference represents a canonical problem of learning multiple graph Laplacian matrices from heterogeneous graph signals.
We propose a general graph estimator based on a novel structured fusion regularization.
We show that the proposed graph estimator enjoys both high computational efficiency and rigorous theoretical guarantee.
arXiv Detail & Related papers (2021-03-05T04:42:32Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.