ASMR: Augmenting Life Scenario using Large Generative Models for Robotic Action Reflection
- URL: http://arxiv.org/abs/2506.13956v1
- Date: Mon, 16 Jun 2025 19:58:54 GMT
- Title: ASMR: Augmenting Life Scenario using Large Generative Models for Robotic Action Reflection
- Authors: Shang-Chi Tsai, Seiya Kawano, Angel Garcia Contreras, Koichiro Yoshino, Yun-Nung Chen,
- Abstract summary: This paper introduces a novel framework focusing on data augmentation in robotic assistance scenarios.<n>It involves leveraging a sophisticated large language model to simulate potential conversations and environmental contexts.<n>The additionally generated data serves to refine the latest multimodal models, enabling them to more accurately determine appropriate actions.
- Score: 21.75681306780917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When designing robots to assist in everyday human activities, it is crucial to enhance user requests with visual cues from their surroundings for improved intent understanding. This process is defined as a multimodal classification task. However, gathering a large-scale dataset encompassing both visual and linguistic elements for model training is challenging and time-consuming. To address this issue, our paper introduces a novel framework focusing on data augmentation in robotic assistance scenarios, encompassing both dialogues and related environmental imagery. This approach involves leveraging a sophisticated large language model to simulate potential conversations and environmental contexts, followed by the use of a stable diffusion model to create images depicting these environments. The additionally generated data serves to refine the latest multimodal models, enabling them to more accurately determine appropriate actions in response to user interactions with the limited target data. Our experimental results, based on a dataset collected from real-world scenarios, demonstrate that our methodology significantly enhances the robot's action selection capabilities, achieving the state-of-the-art performance.
Related papers
- rt-RISeg: Real-Time Model-Free Robot Interactive Segmentation for Active Instance-Level Object Understanding [7.264443471771696]
We propose a novel real-time interactive perception framework, rt-RISeg, that continuously segments unseen objects by robot interactions.<n>We demonstrate that the relative rotational and linear velocities of randomly sampled body frames, resulting from selected robot interactions, can be used to identify objects without any learned segmentation model.<n>We showcase the effectiveness of our proposed interactive perception method by achieving an average object segmentation accuracy rate 27.5% greater than state-of-the-art UOIS methods.
arXiv Detail & Related papers (2025-07-14T20:02:52Z) - Seamless Interaction: Dyadic Audiovisual Motion Modeling and Large-Scale Dataset [113.25650486482762]
We introduce the Seamless Interaction dataset, a large-scale collection of over 4,000 hours of face-to-face interaction footage.<n>This dataset enables the development of AI technologies that understand dyadic embodied dynamics.<n>We develop a suite of models that utilize the dataset to generate dyadic motion gestures and facial expressions aligned with human speech.
arXiv Detail & Related papers (2025-06-27T18:09:49Z) - Flex: End-to-End Text-Instructed Visual Navigation from Foundation Model Features [59.892436892964376]
We investigate the minimal data requirements and architectural adaptations necessary to achieve robust closed-loop performance with vision-based control policies.<n>Our findings are synthesized in Flex (Fly lexically), a framework that uses pre-trained Vision Language Models (VLMs) as frozen patch-wise feature extractors.<n>We demonstrate the effectiveness of this approach on a quadrotor fly-to-target task, where agents trained via behavior cloning successfully generalize to real-world scenes.
arXiv Detail & Related papers (2024-10-16T19:59:31Z) - Scaling Up Dynamic Human-Scene Interaction Modeling [58.032368564071895]
TRUMANS is the most comprehensive motion-captured HSI dataset currently available.
It intricately captures whole-body human motions and part-level object dynamics.
We devise a diffusion-based autoregressive model that efficiently generates HSI sequences of any length.
arXiv Detail & Related papers (2024-03-13T15:45:04Z) - MEIA: Multimodal Embodied Perception and Interaction in Unknown Environments [82.67236400004826]
We introduce the Multimodal Embodied Interactive Agent (MEIA), capable of translating high-level tasks expressed in natural language into a sequence of executable actions.
MEM module enables MEIA to generate executable action plans based on diverse requirements and the robot's capabilities.
arXiv Detail & Related papers (2024-02-01T02:43:20Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks.
We present an interactive planning technique for partially observable tasks using LLMs.
arXiv Detail & Related papers (2023-12-11T22:54:44Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
We propose a novel paradigm that effectively leverages language-reasoning segmentation mask generated by internet-scale foundation models.<n>Our approach can effectively and robustly perceive object pose and enable sample-efficient generalization learning.<n>Demos can be found in our submitted video, and more comprehensive ones can be found in link1 or link2.
arXiv Detail & Related papers (2023-06-09T07:22:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.