AI shares emotion with humans across languages and cultures
- URL: http://arxiv.org/abs/2506.13978v1
- Date: Wed, 11 Jun 2025 14:42:30 GMT
- Title: AI shares emotion with humans across languages and cultures
- Authors: Xiuwen Wu, Hao Wang, Zhiang Yan, Xiaohan Tang, Pengfei Xu, Wai-Ting Siok, Ping Li, Jia-Hong Gao, Bingjiang Lyu, Lang Qin,
- Abstract summary: We assess human-AI emotional alignment across linguistic-cultural groups and model-families.<n>Our analyses reveal that LLM-derived emotion spaces are structurally congruent with human perception.<n>We show that model expressions can be stably and naturally modulated across distinct emotion categories.
- Score: 12.530921452568291
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effective and safe human-machine collaboration requires the regulated and meaningful exchange of emotions between humans and artificial intelligence (AI). Current AI systems based on large language models (LLMs) can provide feedback that makes people feel heard. Yet it remains unclear whether LLMs represent emotion in language as humans do, or whether and how the emotional tone of their output can be controlled. We assess human-AI emotional alignment across linguistic-cultural groups and model-families, using interpretable LLM features translated from concept-sets for over twenty nuanced emotion categories (including six basic emotions). Our analyses reveal that LLM-derived emotion spaces are structurally congruent with human perception, underpinned by the fundamental affective dimensions of valence and arousal. Furthermore, these emotion-related features also accurately predict large-scale behavioural data on word ratings along these two core dimensions, reflecting both universal and language-specific patterns. Finally, by leveraging steering vectors derived solely from human-centric emotion concepts, we show that model expressions can be stably and naturally modulated across distinct emotion categories, which provides causal evidence that human emotion concepts can be used to systematically induce LLMs to produce corresponding affective states when conveying content. These findings suggest AI not only shares emotional representations with humans but its affective outputs can be precisely guided using psychologically grounded emotion concepts.
Related papers
- AI with Emotions: Exploring Emotional Expressions in Large Language Models [0.0]
Large Language Models (LLMs) play role-play as agents answering questions with specified emotional states.<n>Russell's Circumplex model characterizes emotions along the sleepy-activated (arousal) and pleasure-displeasure (valence) axes.<n> evaluation showed that the emotional states of the generated answers were consistent with the specifications.
arXiv Detail & Related papers (2025-04-20T18:49:25Z) - Artificial Intelligence Can Emulate Human Normative Judgments on Emotional Visual Scenes [0.09208007322096533]
We study whether state-of-the-art multimodal systems can emulate human emotional ratings on a standardized set of images.<n>The AI judgements correlate surprisingly well with the average human ratings.
arXiv Detail & Related papers (2025-03-24T15:41:23Z) - "Only ChatGPT gets me": An Empirical Analysis of GPT versus other Large Language Models for Emotion Detection in Text [2.6012482282204004]
This work investigates the capabilities of large language models (LLMs) in detecting and understanding human emotions through text.<n>By employing a methodology that involves comparisons with a state-of-the-art model on the GoEmotions dataset, we aim to gauge LLMs' effectiveness as a system for emotional analysis.
arXiv Detail & Related papers (2025-03-05T09:47:49Z) - MEMO-Bench: A Multiple Benchmark for Text-to-Image and Multimodal Large Language Models on Human Emotion Analysis [53.012111671763776]
This study introduces MEMO-Bench, a comprehensive benchmark consisting of 7,145 portraits, each depicting one of six different emotions.
Results demonstrate that existing T2I models are more effective at generating positive emotions than negative ones.
Although MLLMs show a certain degree of effectiveness in distinguishing and recognizing human emotions, they fall short of human-level accuracy.
arXiv Detail & Related papers (2024-11-18T02:09:48Z) - Enhancing Emotional Generation Capability of Large Language Models via Emotional Chain-of-Thought [50.13429055093534]
Large Language Models (LLMs) have shown remarkable performance in various emotion recognition tasks.
We propose the Emotional Chain-of-Thought (ECoT) to enhance the performance of LLMs on various emotional generation tasks.
arXiv Detail & Related papers (2024-01-12T16:42:10Z) - The Good, The Bad, and Why: Unveiling Emotions in Generative AI [73.94035652867618]
We show that EmotionPrompt can boost the performance of AI models while EmotionAttack can hinder it.
EmotionDecode reveals that AI models can comprehend emotional stimuli akin to the mechanism of dopamine in the human brain.
arXiv Detail & Related papers (2023-12-18T11:19:45Z) - Language-Specific Representation of Emotion-Concept Knowledge Causally
Supports Emotion Inference [44.126681295827794]
This study used a form of artificial intelligence known as large language models (LLMs) to assess whether language-based representations of emotion causally contribute to the AI's ability to generate inferences about the emotional meaning of novel situations.
Our findings provide a proof-in-concept that even a LLM can learn about emotions in the absence of sensory-motor representations and highlight the contribution of language-derived emotion-concept knowledge for emotion inference.
arXiv Detail & Related papers (2023-02-19T14:21:33Z) - HICEM: A High-Coverage Emotion Model for Artificial Emotional
Intelligence [9.153146173929935]
Next-generation artificial emotional intelligence (AEI) is taking center stage to address users' desire for deeper, more meaningful human-machine interaction.
Unlike theory of emotion, which has been the historical focus in psychology, emotion models are a descriptive tools.
This work has broad implications in social robotics, human-machine interaction, mental healthcare, and computational psychology.
arXiv Detail & Related papers (2022-06-15T15:21:30Z) - Emotion Intensity and its Control for Emotional Voice Conversion [77.05097999561298]
Emotional voice conversion (EVC) seeks to convert the emotional state of an utterance while preserving the linguistic content and speaker identity.
In this paper, we aim to explicitly characterize and control the intensity of emotion.
We propose to disentangle the speaker style from linguistic content and encode the speaker style into a style embedding in a continuous space that forms the prototype of emotion embedding.
arXiv Detail & Related papers (2022-01-10T02:11:25Z) - A Circular-Structured Representation for Visual Emotion Distribution
Learning [82.89776298753661]
We propose a well-grounded circular-structured representation to utilize the prior knowledge for visual emotion distribution learning.
To be specific, we first construct an Emotion Circle to unify any emotional state within it.
On the proposed Emotion Circle, each emotion distribution is represented with an emotion vector, which is defined with three attributes.
arXiv Detail & Related papers (2021-06-23T14:53:27Z) - Enhancing Cognitive Models of Emotions with Representation Learning [58.2386408470585]
We present a novel deep learning-based framework to generate embedding representations of fine-grained emotions.
Our framework integrates a contextualized embedding encoder with a multi-head probing model.
Our model is evaluated on the Empathetic Dialogue dataset and shows the state-of-the-art result for classifying 32 emotions.
arXiv Detail & Related papers (2021-04-20T16:55:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.