Comparison of Two Methods for Stationary Incident Detection Based on Background Image
- URL: http://arxiv.org/abs/2506.14256v1
- Date: Tue, 17 Jun 2025 07:18:04 GMT
- Title: Comparison of Two Methods for Stationary Incident Detection Based on Background Image
- Authors: Deepak Ghimire, Joonwhoan Lee,
- Abstract summary: We proposed two schemes for stationary object detection, and we compare those in terms of detection performance and computational complexity.<n>We used normalized cross correlation (NCC) based image comparison to monitor and track the detected stationary object in a video scene.
- Score: 1.3812010983144802
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In general, background subtraction-based methods are used to detect moving objects in visual tracking applications. In this paper, we employed a background subtraction-based scheme to detect the temporarily stationary objects. We proposed two schemes for stationary object detection, and we compare those in terms of detection performance and computational complexity. In the first approach, we used a single background, and in the second approach, we used dual backgrounds, generated with different learning rates, in order to detect temporarily stopped objects. Finally, we used normalized cross correlation (NCC) based image comparison to monitor and track the detected stationary object in a video scene. The proposed method is robust with partial occlusion, short-time fully occlusion, and illumination changes, and it can operate in real time.
Related papers
- Real-time Multi-Object Tracking Based on Bi-directional Matching [0.0]
This study offers a bi-directional matching algorithm for multi-object tracking.
A stranded area is used in the matching algorithm to temporarily store the objects that fail to be tracked.
In the MOT17 challenge, the proposed algorithm achieves 63.4% MOTA, 55.3% IDF1, and 20.1 FPS tracking speed.
arXiv Detail & Related papers (2023-03-15T08:38:08Z) - Fusing Local Similarities for Retrieval-based 3D Orientation Estimation
of Unseen Objects [70.49392581592089]
We tackle the task of estimating the 3D orientation of previously-unseen objects from monocular images.
We follow a retrieval-based strategy and prevent the network from learning object-specific features.
Our experiments on the LineMOD, LineMOD-Occluded, and T-LESS datasets show that our method yields a significantly better generalization to unseen objects than previous works.
arXiv Detail & Related papers (2022-03-16T08:53:00Z) - Implicit Motion Handling for Video Camouflaged Object Detection [60.98467179649398]
We propose a new video camouflaged object detection (VCOD) framework.
It can exploit both short-term and long-term temporal consistency to detect camouflaged objects from video frames.
arXiv Detail & Related papers (2022-03-14T17:55:41Z) - SAR image matching algorithm based on multi-class features [0.27624021966289597]
Synthetic aperture radar has the ability to work 24/7 and 24/7, and has high application value.
Propose a new SAR image matching algorithm based on multi class features, mainly using two different types of features: straight lines and regions to enhance the robustness of the matching algorithm.
The experimental results have verified that this algorithm can obtain high-precision matching results, achieve precise target positioning, and has good robustness to changes in perspective and lighting.
arXiv Detail & Related papers (2021-08-13T01:07:51Z) - You Better Look Twice: a new perspective for designing accurate
detectors with reduced computations [56.34005280792013]
BLT-net is a new low-computation two-stage object detection architecture.
It reduces computations by separating objects from background using a very lite first-stage.
Resulting image proposals are then processed in the second-stage by a highly accurate model.
arXiv Detail & Related papers (2021-07-21T12:39:51Z) - Ensembling object detectors for image and video data analysis [98.26061123111647]
We propose a method for ensembling the outputs of multiple object detectors for improving detection performance and precision of bounding boxes on image data.
We extend it to video data by proposing a two-stage tracking-based scheme for detection refinement.
arXiv Detail & Related papers (2021-02-09T12:38:16Z) - Static object detection and segmentation in videos based on dual
foregrounds difference with noise filtering [0.0]
This paper presents static object detection and segmentation method in videos from cluttered scenes.
The proposed method was built for rock breaker station application and effectively validated with real, synthetic and two public data sets.
arXiv Detail & Related papers (2020-12-19T15:01:59Z) - FMODetect: Robust Detection and Trajectory Estimation of Fast Moving
Objects [110.29738581961955]
We propose the first learning-based approach for detection and trajectory estimation of fast moving objects.
The proposed method first detects all fast moving objects as a truncated distance function to the trajectory.
For the sharp appearance estimation, we propose an energy minimization based deblurring.
arXiv Detail & Related papers (2020-12-15T11:05:34Z) - Local Anomaly Detection in Videos using Object-Centric Adversarial
Learning [12.043574473965318]
We propose a two-stage object-centric adversarial framework that only needs object regions for detecting frame-level local anomalies in videos.
The first stage consists in learning the correspondence between the current appearance and past gradient images of objects in scenes deemed normal, allowing us to either generate the past gradient from current appearance or the reverse.
The second stage extracts the partial reconstruction errors between real and generated images (appearance and past gradient) with normal object behaviour, and trains a discriminator in an adversarial fashion.
arXiv Detail & Related papers (2020-11-13T02:02:37Z) - Joint Detection and Tracking in Videos with Identification Features [36.55599286568541]
We propose the first joint optimization of detection, tracking and re-identification features for videos.
Our method reaches the state-of-the-art on MOT, it ranks 1st in the UA-DETRAC'18 tracking challenge among online trackers, and 3rd overall.
arXiv Detail & Related papers (2020-05-21T21:06:40Z) - Asynchronous Tracking-by-Detection on Adaptive Time Surfaces for
Event-based Object Tracking [87.0297771292994]
We propose an Event-based Tracking-by-Detection (ETD) method for generic bounding box-based object tracking.
To achieve this goal, we present an Adaptive Time-Surface with Linear Time Decay (ATSLTD) event-to-frame conversion algorithm.
We compare the proposed ETD method with seven popular object tracking methods, that are based on conventional cameras or event cameras, and two variants of ETD.
arXiv Detail & Related papers (2020-02-13T15:58:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.