sHGCN: Simplified hyperbolic graph convolutional neural networks
- URL: http://arxiv.org/abs/2506.14438v1
- Date: Tue, 17 Jun 2025 11:58:07 GMT
- Title: sHGCN: Simplified hyperbolic graph convolutional neural networks
- Authors: Pol Arévalo, Alexis Molina, Álvaro Ciudad,
- Abstract summary: Hyperbolic geometry has emerged as a powerful tool for modeling complex, structured data.<n>We show that streamlined hyperbolic operations can lead to substantial gains in computational speed and predictive accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hyperbolic geometry has emerged as a powerful tool for modeling complex, structured data, particularly where hierarchical or tree-like relationships are present. By enabling embeddings with lower distortion, hyperbolic neural networks offer promising alternatives to Euclidean-based models for capturing intricate data structures. Despite these advantages, they often face performance challenges, particularly in computational efficiency and tasks requiring high precision. In this work, we address these limitations by simplifying key operations within hyperbolic neural networks, achieving notable improvements in both runtime and performance. Our findings demonstrate that streamlined hyperbolic operations can lead to substantial gains in computational speed and predictive accuracy, making hyperbolic neural networks a more viable choice for a broader range of applications.
Related papers
- Lorentzian Residual Neural Networks [15.257990326035694]
We introduce LResNet, a novel Lorentzian residual neural network based on the weighted Lorentzian centroid in the Lorentz model of hyperbolic geometry.<n>Our method enables the efficient integration of residual connections in hyperbolic neural networks while preserving their hierarchical representation capabilities.<n>Our findings highlight the potential of LResNet for building more expressive neural networks in hyperbolic embedding space.
arXiv Detail & Related papers (2024-12-19T09:56:01Z) - Computational and Storage Efficient Quadratic Neurons for Deep Neural
Networks [10.379191500493503]
Experimental results have demonstrated that the proposed quadratic neuron structure exhibits superior computational and storage efficiency across various tasks.
This work introduces an efficient quadratic neuron architecture distinguished by its enhanced utilization of second-order computational information.
arXiv Detail & Related papers (2023-06-10T11:25:31Z) - Scalable Spatiotemporal Graph Neural Networks [14.415967477487692]
Graph neural networks (GNNs) are often the core component of the forecasting architecture.
In most pretemporal GNNs, the computational complexity scales up to a quadratic factor with the length of the sequence times the number of links in the graph.
We propose a scalable architecture that exploits an efficient encoding of both temporal and spatial dynamics.
arXiv Detail & Related papers (2022-09-14T09:47:38Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - Mitigating Performance Saturation in Neural Marked Point Processes:
Architectures and Loss Functions [50.674773358075015]
We propose a simple graph-based network structure called GCHP, which utilizes only graph convolutional layers.
We show that GCHP can significantly reduce training time and the likelihood ratio loss with interarrival time probability assumptions can greatly improve the model performance.
arXiv Detail & Related papers (2021-07-07T16:59:14Z) - Fully Hyperbolic Neural Networks [63.22521652077353]
We propose a fully hyperbolic framework to build hyperbolic networks based on the Lorentz model.
We show that our method has better performance for building both shallow and deep networks.
arXiv Detail & Related papers (2021-05-31T03:36:49Z) - ItNet: iterative neural networks with small graphs for accurate and
efficient anytime prediction [1.52292571922932]
In this study, we introduce a class of network models that have a small memory footprint in terms of their computational graphs.
We show state-of-the-art results for semantic segmentation on the CamVid and Cityscapes datasets.
arXiv Detail & Related papers (2021-01-21T15:56:29Z) - Binary Graph Neural Networks [69.51765073772226]
Graph Neural Networks (GNNs) have emerged as a powerful and flexible framework for representation learning on irregular data.
In this paper, we present and evaluate different strategies for the binarization of graph neural networks.
We show that through careful design of the models, and control of the training process, binary graph neural networks can be trained at only a moderate cost in accuracy on challenging benchmarks.
arXiv Detail & Related papers (2020-12-31T18:48:58Z) - Not Half Bad: Exploring Half-Precision in Graph Convolutional Neural
Networks [8.460826851547294]
efficient graph analysis using modern machine learning is receiving a growing level of attention.
Deep learning approaches often operate over the entire adjacency matrix.
It is desirable to identify efficient measures to reduce both run-time and memory requirements.
arXiv Detail & Related papers (2020-10-23T19:47:42Z) - Hyperbolic Neural Networks++ [66.16106727715061]
We generalize the fundamental components of neural networks in a single hyperbolic geometry model, namely, the Poincar'e ball model.
Experiments show the superior parameter efficiency of our methods compared to conventional hyperbolic components, and stability and outperformance over their Euclidean counterparts.
arXiv Detail & Related papers (2020-06-15T08:23:20Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.