Multilevel Electromagnetically Induced Transparency Cooling
- URL: http://arxiv.org/abs/2506.14546v1
- Date: Tue, 17 Jun 2025 14:04:35 GMT
- Title: Multilevel Electromagnetically Induced Transparency Cooling
- Authors: Katya Fouka, Athreya Shankar, Ting Rei Tan, Arghavan Safavi-Naini,
- Abstract summary: We develop a formalism to accurately determine the cooling rate in the weak sideband coupling regime.<n>We clarify the connection between the cooling rate and the absorption spectrum, offering a pathway for efficient near-ground-state cooling of ions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electromagnetically Induced Transparency (EIT) cooling is a well-established method for preparing trapped ion systems in their motional ground state. However, isolating a three-level system, as required for EIT cooling, is often challenging or impractical. In this work, we extend the EIT cooling framework to multilevel systems where the number of ground states exceeds the number of excited states, ensuring the presence of at least one dark state. We develop a formalism to accurately determine the cooling rate in the weak sideband coupling regime and provide an approximate estimate for cooling rates beyond this regime, without the need for explicit simulation of the motional degree of freedom. We clarify the connection between the cooling rate and the absorption spectrum, offering a pathway for efficient near-ground-state cooling of ions with complex electronic structures.
Related papers
- Trapped-ion laser cooling in structured light fields [0.0]
We consider laser cooling in structured light profiles enabling selective sideband excitation with nulled carrier drive.
We quantify performance of Doppler cooling from beyond the Lamb-Dicke regime (LDR), and ground-state (GS) cooling using electromagnetically induced transparency (EIT)
Our results indicate potential for simple structured light profiles to alleviate bottlenecks in laser cooling, and for scalable photonic devices to improve basic operation quality in trapped-ion systems.
arXiv Detail & Related papers (2024-11-13T18:22:04Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Controlling local thermal states in classical many-body systems [77.34726150561087]
We lay the theoretical foundations for the active control of local thermal states in arbitrary non-reciprocal systems.
We consider several representative examples in the context of systems exchanging heat radiatively.
arXiv Detail & Related papers (2022-08-19T07:08:19Z) - Superior dark-state cooling via nonreciprocal couplings in trapped atoms [4.915587669065746]
Cooling trapped atoms toward their motional ground states is key to applications of quantum simulation and quantum computation.
We present an intriguing dark-state cooling scheme in $Lambda$-type three-level structure, which is shown superior than the conventional electromagnetically-induced-transparency cooling in a single atom.
arXiv Detail & Related papers (2022-06-29T05:43:22Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Chiral-coupling-assisted refrigeration in trapped ions [5.273668342847468]
We show the capability of light-mediated chiral couplings between ions, which enables a superior cooling scheme.
Our results help surpass the bottleneck of cooling procedure in applications of trapped-ion-based quantum computer and simulator.
arXiv Detail & Related papers (2022-03-02T05:18:11Z) - Heat transport and cooling performance in a nanomechanical system with
local and non local interactions [68.8204255655161]
We study heat transport through a one dimensional time-dependent nanomechanical system.
The system presents different stationary transport regimes depending on the driving frequency, temperature gradients and the degree of locality of the interactions.
arXiv Detail & Related papers (2022-02-21T12:03:54Z) - Parallel-Electromagnetically-Induced-Transparency Near Ground-State
Cooling of a Trapped-ion Crystal [15.436462186060728]
We experimentally demonstrate a parallel-electromagnetically-induced transparency (parallel-EIT) cooling technique for ion crystals in the Paul trap.
It has less stringent requirements on the cooling resonance condition than the standard electromagnetically-induced transparency (EIT) cooling.
A proof-of-principle validation for this cooling scheme is experimentally demonstrated with up to 4 trapped 40Ca+ ions.
arXiv Detail & Related papers (2021-12-02T07:40:03Z) - A scalable helium gas cooling system for trapped-ion applications [51.715517570634994]
A modular cooling system is presented for use with multiple ion-trapping experiments simultaneously.
The cooling system is expected to deliver a net cooling power of 111 W at 70 K to up to four experiments.
arXiv Detail & Related papers (2021-06-14T16:37:54Z) - Fast Laser Cooling Using Optimal Quantum Control [11.815965846475027]
State of the art cooling schemes often work under a set of optimal cooling conditions derived analytically.
We show that faster cooling can be achieved while at the same time a low average phonon occupation can be retained.
arXiv Detail & Related papers (2021-06-10T01:01:18Z) - Adiabatic Sensing Technique for Optimal Temperature Estimation using
Trapped Ions [64.31011847952006]
We propose an adiabatic method for optimal phonon temperature estimation using trapped ions.
The relevant information of the phonon thermal distributions can be transferred to the collective spin-degree of freedom.
We show that each of the thermal state probabilities is adiabatically mapped onto the respective collective spin-excitation configuration.
arXiv Detail & Related papers (2020-12-16T12:58:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.