AIn't Nothing But a Survey? Using Large Language Models for Coding German Open-Ended Survey Responses on Survey Motivation
- URL: http://arxiv.org/abs/2506.14634v3
- Date: Thu, 03 Jul 2025 07:58:18 GMT
- Title: AIn't Nothing But a Survey? Using Large Language Models for Coding German Open-Ended Survey Responses on Survey Motivation
- Authors: Leah von der Heyde, Anna-Carolina Haensch, Bernd Weiß, Jessica Daikeler,
- Abstract summary: This study investigates what extent different LLMs can be used to code open-ended survey responses in other contexts.<n>We compare several state-of-the-art LLMs and several prompting approaches, and evaluate the LLMs' performance by using human expert codings.<n>Our study contributes to the growing body of research about the conditions under which LLMs can be efficiently, accurately, and reliably leveraged in survey research.
- Score: 0.8437187555622164
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent development and wider accessibility of LLMs have spurred discussions about how they can be used in survey research, including classifying open-ended survey responses. Due to their linguistic capacities, it is possible that LLMs are an efficient alternative to time-consuming manual coding and the pre-training of supervised machine learning models. As most existing research on this topic has focused on English-language responses relating to non-complex topics or on single LLMs, it is unclear whether its findings generalize and how the quality of these classifications compares to established methods. In this study, we investigate to what extent different LLMs can be used to code open-ended survey responses in other contexts, using German data on reasons for survey participation as an example. We compare several state-of-the-art LLMs and several prompting approaches, and evaluate the LLMs' performance by using human expert codings. Overall performance differs greatly between LLMs, and only a fine-tuned LLM achieves satisfactory levels of predictive performance. Performance differences between prompting approaches are conditional on the LLM used. Finally, LLMs' unequal classification performance across different categories of reasons for survey participation results in different categorical distributions when not using fine-tuning. We discuss the implications of these findings, both for methodological research on coding open-ended responses and for their substantive analysis, and for practitioners processing or substantively analyzing such data. Finally, we highlight the many trade-offs researchers need to consider when choosing automated methods for open-ended response classification in the age of LLMs. In doing so, our study contributes to the growing body of research about the conditions under which LLMs can be efficiently, accurately, and reliably leveraged in survey research.
Related papers
- Iterative Self-Incentivization Empowers Large Language Models as Agentic Searchers [74.17516978246152]
Large language models (LLMs) have been widely integrated into information retrieval to advance traditional techniques.<n>We propose EXSEARCH, an agentic search framework, where the LLM learns to retrieve useful information as the reasoning unfolds.<n>Experiments on four knowledge-intensive benchmarks show that EXSEARCH substantially outperforms baselines.
arXiv Detail & Related papers (2025-05-26T15:27:55Z) - LLMs as Data Annotators: How Close Are We to Human Performance [47.61698665650761]
Manual annotation of data is labor-intensive, time-consuming, and costly.<n>In-context learning (ICL) in which some examples related to the task are given in the prompt can lead to inefficiencies and suboptimal model performance.<n>This paper presents experiments comparing several LLMs, considering different embedding models, across various datasets for the Named Entity Recognition (NER) task.
arXiv Detail & Related papers (2025-04-21T11:11:07Z) - Highlighting Case Studies in LLM Literature Review of Interdisciplinary System Science [0.18416014644193066]
Large Language Models (LLMs) were used to assist four Commonwealth Scientific and Industrial Research Organisation (CSIRO) researchers.<n>We evaluate the performance of LLMs for systematic literature reviews.
arXiv Detail & Related papers (2025-03-16T05:52:18Z) - Scoring with Large Language Models: A Study on Measuring Empathy of Responses in Dialogues [3.2162648244439684]
We develop a framework for investigating how effective Large Language Models are at measuring and scoring empathy of responses in dialogues.<n>Our strategy is to approximate the performance of state-of-the-art and fine-tuned LLMs with explicit and explainable features.<n>Our results show that when only using embeddings, it is possible to achieve performance close to that of generic LLMs.
arXiv Detail & Related papers (2024-12-28T20:37:57Z) - EVOLvE: Evaluating and Optimizing LLMs For In-Context Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.<n>We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.<n>Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - DnA-Eval: Enhancing Large Language Model Evaluation through Decomposition and Aggregation [75.81096662788254]
Large Language Models (LLMs) are scalable and economical evaluators.<n>The question of how reliable these evaluators are has emerged as a crucial research question.<n>We propose Decompose and Aggregate, which breaks down the evaluation process into different stages based on pedagogical practices.
arXiv Detail & Related papers (2024-05-24T08:12:30Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
This paper introduces a novel collaborative approach, namely SlimPLM, that detects missing knowledge in large language models (LLMs) with a slim proxy model.
We employ a proxy model which has far fewer parameters, and take its answers as answers.
Heuristic answers are then utilized to predict the knowledge required to answer the user question, as well as the known and unknown knowledge within the LLM.
arXiv Detail & Related papers (2024-02-19T11:11:08Z) - Large Language Models: A Survey [66.39828929831017]
Large Language Models (LLMs) have drawn a lot of attention due to their strong performance on a wide range of natural language tasks.<n>LLMs' ability of general-purpose language understanding and generation is acquired by training billions of model's parameters on massive amounts of text data.
arXiv Detail & Related papers (2024-02-09T05:37:09Z) - Breaking the Silence: the Threats of Using LLMs in Software Engineering [12.368546216271382]
Large Language Models (LLMs) have gained considerable traction within the Software Engineering (SE) community.
This paper initiates an open discussion on potential threats to the validity of LLM-based research.
arXiv Detail & Related papers (2023-12-13T11:02:19Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
This paper investigates the capabilities of large language models (LLMs) in performing various sentiment analysis tasks.
We evaluate performance across 13 tasks on 26 datasets and compare the results against small language models (SLMs) trained on domain-specific datasets.
arXiv Detail & Related papers (2023-05-24T10:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.