Integrating Dynamical Systems Learning with Foundational Models: A Meta-Evolutionary AI Framework for Clinical Trials
- URL: http://arxiv.org/abs/2506.14782v2
- Date: Thu, 19 Jun 2025 23:50:01 GMT
- Title: Integrating Dynamical Systems Learning with Foundational Models: A Meta-Evolutionary AI Framework for Clinical Trials
- Authors: Joseph Geraci, Bessi Qorri, Christian Cumbaa, Mike Tsay, Paul Leonczyk, Luca Pani,
- Abstract summary: NetraAI is a system-based framework engineered for stability and interpretability on small clinical trial datasets.<n>We formalize NetraAI's foundations, combining contraction mappings, information geometry, and evolutionary algorithms to identify predictive patient cohorts.<n>By prioritizing reliable, explainable knowledge, NetraAI offers a new generation of adaptive, self-reflective AI to accelerate clinical discovery.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Artificial intelligence (AI) has evolved into an ecosystem of specialized "species," each with unique strengths. We analyze two: DeepSeek-V3, a 671-billion-parameter Mixture of Experts large language model (LLM) exemplifying scale-driven generality, and NetraAI, a dynamical system-based framework engineered for stability and interpretability on small clinical trial datasets. We formalize NetraAI's foundations, combining contraction mappings, information geometry, and evolutionary algorithms to identify predictive patient cohorts. Features are embedded in a metric space and iteratively contracted toward stable attractors that define latent subgroups. A pseudo-temporal embedding and long-range memory enable exploration of higher-order feature interactions, while an internal evolutionary loop selects compact, explainable 2-4-variable bundles ("Personas"). To guide discovery, we introduce an LLM Strategist as a meta-evolutionary layer that observes Persona outputs, prioritizes promising variables, injects domain knowledge, and assesses robustness. This two-tier architecture mirrors the human scientific process: NetraAI as experimentalist, the LLM as theorist, forming a self-improving loop. In case studies (schizophrenia, depression, pancreatic cancer), NetraAI uncovered small, high-effect-size subpopulations that transformed weak baseline models (AUC ~0.50-0.68) into near-perfect classifiers using only a few features. We position NetraAI at the intersection of dynamical systems, information geometry, and evolutionary learning, aligned with emerging concept-level reasoning paradigms such as LeCun's Joint Embedding Predictive Architecture (JEPA). By prioritizing reliable, explainable knowledge, NetraAI offers a new generation of adaptive, self-reflective AI to accelerate clinical discovery.
Related papers
- A Survey of Self-Evolving Agents: On Path to Artificial Super Intelligence [87.08051686357206]
Large Language Models (LLMs) have demonstrated strong capabilities but remain fundamentally static.<n>As LLMs are increasingly deployed in open-ended, interactive environments, this static nature has become a critical bottleneck.<n>This survey provides the first systematic and comprehensive review of self-evolving agents.
arXiv Detail & Related papers (2025-07-28T17:59:05Z) - AMix-1: A Pathway to Test-Time Scalable Protein Foundation Model [92.51919604882984]
We introduce AMix-1, a powerful protein foundation model built on Flow Bayesian Networks.<n>AMix-1 is empowered by a systematic training methodology, encompassing pretraining scaling laws, emergent capability analysis, in-context learning mechanism, and test-time scaling algorithm.<n>Building on this foundation, we devise a multiple sequence alignment (MSA)-based in-context learning strategy to unify protein design into a general framework.
arXiv Detail & Related papers (2025-07-11T17:02:25Z) - From Human to Machine Psychology: A Conceptual Framework for Understanding Well-Being in Large Language Model [0.0]
This paper introduces the concept of machine flourishing and proposes the PAPERS framework.<n>Our findings underscore the importance of developing AI-specific models of flourishing that account for both human-aligned and system-specific priorities.
arXiv Detail & Related papers (2025-06-14T20:14:02Z) - Exploring Flow-Lenia Universes with a Curiosity-driven AI Scientist: Discovering Diverse Ecosystem Dynamics [17.425135648759515]
We present a method for the automated discovery of system-level dynamics in Flow-Lenia--a continuous cellular automaton (CA)<n>This method aims to uncover processes leading to self-organization of evolutionary and ecosystemic dynamics in CAs.
arXiv Detail & Related papers (2025-05-21T20:28:58Z) - DSAM: A Deep Learning Framework for Analyzing Temporal and Spatial Dynamics in Brain Networks [4.041732967881764]
Most rs-fMRI studies compute a single static functional connectivity matrix across brain regions of interest.
These approaches are at risk of oversimplifying brain dynamics and lack proper consideration of the goal at hand.
We propose a novel interpretable deep learning framework that learns goal-specific functional connectivity matrix directly from time series.
arXiv Detail & Related papers (2024-05-19T23:35:06Z) - Unveiling the Unseen: Identifiable Clusters in Trained Depthwise
Convolutional Kernels [56.69755544814834]
Recent advances in depthwise-separable convolutional neural networks (DS-CNNs) have led to novel architectures.
This paper reveals another striking property of DS-CNN architectures: discernible and explainable patterns emerge in their trained depthwise convolutional kernels in all layers.
arXiv Detail & Related papers (2024-01-25T19:05:53Z) - When Large Language Models Meet Evolutionary Algorithms: Potential Enhancements and Challenges [50.280704114978384]
Pre-trained large language models (LLMs) exhibit powerful capabilities for generating natural text.<n> Evolutionary algorithms (EAs) can discover diverse solutions to complex real-world problems.
arXiv Detail & Related papers (2024-01-19T05:58:30Z) - DARLEI: Deep Accelerated Reinforcement Learning with Evolutionary
Intelligence [77.78795329701367]
We present DARLEI, a framework that combines evolutionary algorithms with parallelized reinforcement learning.
We characterize DARLEI's performance under various conditions, revealing factors impacting diversity of evolved morphologies.
We hope to extend DARLEI in future work to include interactions between diverse morphologies in richer environments.
arXiv Detail & Related papers (2023-12-08T16:51:10Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Learning Multiscale Consistency for Self-supervised Electron Microscopy
Instance Segmentation [48.267001230607306]
We propose a pretraining framework that enhances multiscale consistency in EM volumes.
Our approach leverages a Siamese network architecture, integrating strong and weak data augmentations.
It effectively captures voxel and feature consistency, showing promise for learning transferable representations for EM analysis.
arXiv Detail & Related papers (2023-08-19T05:49:13Z) - Target-aware Variational Auto-encoders for Ligand Generation with
Multimodal Protein Representation Learning [2.01243755755303]
We introduce TargetVAE, a target-aware auto-encoder that generates with high binding affinities to arbitrary protein targets.
This is the first effort to unify different representations of proteins into a single model that we name as Protein Multimodal Network (PMN)
arXiv Detail & Related papers (2023-08-02T12:08:17Z) - Subcellular Protein Localisation in the Human Protein Atlas using
Ensembles of Diverse Deep Architectures [11.41081495236219]
Automated visual localisation of subcellular proteins can accelerate our understanding of cell function in health and disease.
We show how this gap can be narrowed by addressing three key aspects: (i) automated improvement of cell annotation quality, (ii) new Convolutional Neural Network (CNN) architectures supporting unbalanced and noisy data, and (iii) informed selection and fusion of multiple & diverse machine learning models.
arXiv Detail & Related papers (2022-05-19T20:28:56Z) - Neurosymbolic hybrid approach to driver collision warning [64.02492460600905]
There are two main algorithmic approaches to autonomous driving systems.
Deep learning alone has achieved state-of-the-art results in many areas.
But sometimes it can be very difficult to debug if the deep learning model doesn't work.
arXiv Detail & Related papers (2022-03-28T20:29:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.