Advances in Compliance Detection: Novel Models Using Vision-Based Tactile Sensors
- URL: http://arxiv.org/abs/2506.14980v1
- Date: Tue, 17 Jun 2025 21:10:05 GMT
- Title: Advances in Compliance Detection: Novel Models Using Vision-Based Tactile Sensors
- Authors: Ziteng Li, Malte Kuhlmann, Ilana Nisky, Nicolás Navarro-Guerrero,
- Abstract summary: Compliance is a critical parameter for describing objects in engineering, agriculture, and biomedical applications.<n>Traditional compliance detection methods are limited by their lack of portability and scalability, rely on specialized, often expensive equipment, and are unsuitable for robotic applications.<n>We propose two models based on Long-term Recurrent Convolutional Networks (LRCNs) and Transformer architectures that leverage RGB tactile images and other information captured by the vision-based sensor GelSight to predict compliance metrics accurately.
- Score: 0.7199733380797579
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Compliance is a critical parameter for describing objects in engineering, agriculture, and biomedical applications. Traditional compliance detection methods are limited by their lack of portability and scalability, rely on specialized, often expensive equipment, and are unsuitable for robotic applications. Moreover, existing neural network-based approaches using vision-based tactile sensors still suffer from insufficient prediction accuracy. In this paper, we propose two models based on Long-term Recurrent Convolutional Networks (LRCNs) and Transformer architectures that leverage RGB tactile images and other information captured by the vision-based sensor GelSight to predict compliance metrics accurately. We validate the performance of these models using multiple metrics and demonstrate their effectiveness in accurately estimating compliance. The proposed models exhibit significant performance improvement over the baseline. Additionally, we investigated the correlation between sensor compliance and object compliance estimation, which revealed that objects that are harder than the sensor are more challenging to estimate.
Related papers
- What Really Matters for Learning-based LiDAR-Camera Calibration [50.2608502974106]
This paper revisits the development of learning-based LiDAR-Camera calibration.<n>We identify the critical limitations of regression-based methods with the widely used data generation pipeline.<n>We also investigate how the input data format and preprocessing operations impact network performance.
arXiv Detail & Related papers (2025-01-28T14:12:32Z) - Graph Neural Networks for Virtual Sensing in Complex Systems: Addressing Heterogeneous Temporal Dynamics [8.715570103753697]
Real-time condition monitoring is crucial for the reliable and efficient operation of complex systems.<n>Virtual sensing addresses limitations by leveraging readily available sensor data and system knowledge.<n>We propose a Heterogeneous Temporal Graph Neural Network (HTGNN) framework.
arXiv Detail & Related papers (2024-07-26T12:16:53Z) - Increasing the Robustness of Model Predictions to Missing Sensors in Earth Observation [5.143097874851516]
We study two novel methods tailored for multi-sensor scenarios, namely Input Sensor Dropout (ISensD) and Ensemble Sensor Invariant (ESensI)
We demonstrate that these methods effectively increase the robustness of model predictions to missing sensors.
We observe that ensemble multi-sensor models are the most robust to the lack of sensors.
arXiv Detail & Related papers (2024-07-22T09:58:29Z) - Physics-Enhanced Graph Neural Networks For Soft Sensing in Industrial Internet of Things [6.374763930914524]
The Industrial Internet of Things (IIoT) is reshaping manufacturing, industrial processes, and infrastructure management.
achieving highly reliable IIoT can be hindered by factors such as the cost of installing large numbers of sensors, limitations in retrofitting existing systems with sensors, or harsh environmental conditions that may make sensor installation impractical.
We propose physics-enhanced Graph Neural Networks (GNNs), which integrate principles of physics into graph-based methodologies.
arXiv Detail & Related papers (2024-04-11T18:03:59Z) - Joint Sensing, Communication, and AI: A Trifecta for Resilient THz User
Experiences [118.91584633024907]
A novel joint sensing, communication, and artificial intelligence (AI) framework is proposed so as to optimize extended reality (XR) experiences over terahertz (THz) wireless systems.
arXiv Detail & Related papers (2023-04-29T00:39:50Z) - Visibility-Inspired Models of Touch Sensors for Navigation [4.730233684561005]
This paper introduces mathematical models of touch sensors for mobile robotics based on visibility.
The introduced models are expected to provide a useful, idealized characterization of task-relevant information.
arXiv Detail & Related papers (2022-03-04T08:23:01Z) - Visual-tactile sensing for Real-time liquid Volume Estimation in
Grasping [58.50342759993186]
We propose a visuo-tactile model for realtime estimation of the liquid inside a deformable container.
We fuse two sensory modalities, i.e., the raw visual inputs from the RGB camera and the tactile cues from our specific tactile sensor.
The robotic system is well controlled and adjusted based on the estimation model in real time.
arXiv Detail & Related papers (2022-02-23T13:38:31Z) - Investigating the Effect of Sensor Modalities in Multi-Sensor
Detection-Prediction Models [8.354898936252516]
We focus on the contribution of sensor modalities towards the model performance.
In addition, we investigate the use of sensor dropout to mitigate the above-mentioned issues.
arXiv Detail & Related papers (2021-01-09T03:21:36Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
We propose a framework, named Semantics-aware Adaptive Knowledge Distillation Networks (SAKDN), to enhance action recognition in vision-sensor modality (videos)
The SAKDN uses multiple wearable-sensors as teacher modalities and uses RGB videos as student modality.
arXiv Detail & Related papers (2020-09-01T03:38:31Z) - Learning Camera Miscalibration Detection [83.38916296044394]
This paper focuses on a data-driven approach to learn the detection of miscalibration in vision sensors, specifically RGB cameras.
Our contributions include a proposed miscalibration metric for RGB cameras and a novel semi-synthetic dataset generation pipeline based on this metric.
By training a deep convolutional neural network, we demonstrate the effectiveness of our pipeline to identify whether a recalibration of the camera's intrinsic parameters is required or not.
arXiv Detail & Related papers (2020-05-24T10:32:49Z) - Deep Soft Procrustes for Markerless Volumetric Sensor Alignment [81.13055566952221]
In this work, we improve markerless data-driven correspondence estimation to achieve more robust multi-sensor spatial alignment.
We incorporate geometric constraints in an end-to-end manner into a typical segmentation based model and bridge the intermediate dense classification task with the targeted pose estimation one.
Our model is experimentally shown to achieve similar results with marker-based methods and outperform the markerless ones, while also being robust to the pose variations of the calibration structure.
arXiv Detail & Related papers (2020-03-23T10:51:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.