Extending Spike-Timing Dependent Plasticity to Learning Synaptic Delays
- URL: http://arxiv.org/abs/2506.14984v1
- Date: Tue, 17 Jun 2025 21:24:58 GMT
- Title: Extending Spike-Timing Dependent Plasticity to Learning Synaptic Delays
- Authors: Marissa Dominijanni, Alexander Ororbia, Kenneth W. Regan,
- Abstract summary: We introduce a novel learning rule for simultaneously learning synaptic connection strengths and delays.<n>We validate our approach by extending a widely-used SNN model for classification trained with unsupervised learning.<n>Results demonstrate that our proposed method consistently achieves superior performance across a variety of test scenarios.
- Score: 50.45313162890861
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Synaptic delays play a crucial role in biological neuronal networks, where their modulation has been observed in mammalian learning processes. In the realm of neuromorphic computing, although spiking neural networks (SNNs) aim to emulate biology more closely than traditional artificial neural networks do, synaptic delays are rarely incorporated into their simulation. We introduce a novel learning rule for simultaneously learning synaptic connection strengths and delays, by extending spike-timing dependent plasticity (STDP), a Hebbian method commonly used for learning synaptic weights. We validate our approach by extending a widely-used SNN model for classification trained with unsupervised learning. Then we demonstrate the effectiveness of our new method by comparing it against another existing methods for co-learning synaptic weights and delays as well as against STDP without synaptic delays. Results demonstrate that our proposed method consistently achieves superior performance across a variety of test scenarios. Furthermore, our experimental results yield insight into the interplay between synaptic efficacy and delay.
Related papers
- Fractional Spike Differential Equations Neural Network with Efficient Adjoint Parameters Training [63.3991315762955]
Spiking Neural Networks (SNNs) draw inspiration from biological neurons to create realistic models for brain-like computation.<n>Most existing SNNs assume a single time constant for neuronal membrane voltage dynamics, modeled by first-order ordinary differential equations (ODEs) with Markovian characteristics.<n>We propose the Fractional SPIKE Differential Equation neural network (fspikeDE), which captures long-term dependencies in membrane voltage and spike trains through fractional-order dynamics.
arXiv Detail & Related papers (2025-07-22T18:20:56Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Learning Delays Through Gradients and Structure: Emergence of Spatiotemporal Patterns in Spiking Neural Networks [0.06752396542927405]
We present a Spiking Neural Network (SNN) model that incorporates learnable synaptic delays through two approaches.
In the latter approach, the network selects and prunes connections, optimizing the delays in sparse connectivity settings.
Our results demonstrate the potential of combining delay learning with dynamic pruning to develop efficient SNN models for temporal data processing.
arXiv Detail & Related papers (2024-07-07T11:55:48Z) - Learning with Chemical versus Electrical Synapses -- Does it Make a
Difference? [61.85704286298537]
Bio-inspired neural networks have the potential to advance our understanding of neural computation and improve the state-of-the-art of AI systems.
We conduct experiments with autonomous lane-keeping through a photorealistic autonomous driving simulator to evaluate their performance under diverse conditions.
arXiv Detail & Related papers (2023-11-21T13:07:20Z) - TC-LIF: A Two-Compartment Spiking Neuron Model for Long-Term Sequential
Modelling [54.97005925277638]
The identification of sensory cues associated with potential opportunities and dangers is frequently complicated by unrelated events that separate useful cues by long delays.
It remains a challenging task for state-of-the-art spiking neural networks (SNNs) to establish long-term temporal dependency between distant cues.
We propose a novel biologically inspired Two-Compartment Leaky Integrate-and-Fire spiking neuron model, dubbed TC-LIF.
arXiv Detail & Related papers (2023-08-25T08:54:41Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Modeling Associative Plasticity between Synapses to Enhance Learning of
Spiking Neural Networks [4.736525128377909]
Spiking Neural Networks (SNNs) are the third generation of artificial neural networks that enable energy-efficient implementation on neuromorphic hardware.
We propose a robust and effective learning mechanism by modeling the associative plasticity between synapses.
Our approaches achieve superior performance on static and state-of-the-art neuromorphic datasets.
arXiv Detail & Related papers (2022-07-24T06:12:23Z) - Axonal Delay As a Short-Term Memory for Feed Forward Deep Spiking Neural
Networks [3.985532502580783]
Recent studies have found that the time delay of neurons plays an important role in the learning process.
configuring the precise timing of the spike is a promising direction for understanding and improving the transmission process of temporal information in SNNs.
In this paper, we verify the effectiveness of integrating time delay into supervised learning and propose a module that modulates the axonal delay through short-term memory.
arXiv Detail & Related papers (2022-04-20T16:56:42Z) - Credit Assignment in Neural Networks through Deep Feedback Control [59.14935871979047]
Deep Feedback Control (DFC) is a new learning method that uses a feedback controller to drive a deep neural network to match a desired output target and whose control signal can be used for credit assignment.
The resulting learning rule is fully local in space and time and approximates Gauss-Newton optimization for a wide range of connectivity patterns.
To further underline its biological plausibility, we relate DFC to a multi-compartment model of cortical pyramidal neurons with a local voltage-dependent synaptic plasticity rule, consistent with recent theories of dendritic processing.
arXiv Detail & Related papers (2021-06-15T05:30:17Z) - SpikePropamine: Differentiable Plasticity in Spiking Neural Networks [0.0]
We introduce a framework for learning the dynamics of synaptic plasticity and neuromodulated synaptic plasticity in Spiking Neural Networks (SNNs)
We show that SNNs augmented with differentiable plasticity are sufficient for solving a set of challenging temporal learning tasks.
These networks are also shown to be capable of producing locomotion on a high-dimensional robotic learning task.
arXiv Detail & Related papers (2021-06-04T19:29:07Z) - Bio-plausible Unsupervised Delay Learning for Extracting Temporal
Features in Spiking Neural Networks [0.548253258922555]
plasticity of the conduction delay between neurons plays a fundamental role in learning.
Understanding the precise adjustment of synaptic delays could help us in developing effective brain-inspired computational models.
arXiv Detail & Related papers (2020-11-18T16:25:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.