CNN-Enabled Scheduling for Probabilistic Real-Time Guarantees in Industrial URLLC
- URL: http://arxiv.org/abs/2506.14987v1
- Date: Tue, 17 Jun 2025 21:40:19 GMT
- Title: CNN-Enabled Scheduling for Probabilistic Real-Time Guarantees in Industrial URLLC
- Authors: Eman Alqudah, Ashfaq Khokhar,
- Abstract summary: We introduce a CNN-based dynamic priority prediction mechanism for improved interference coordination in multi-cell, multi-channel networks.<n>We show SINR gains of up to 113%, 94%, and 49% over LDP across three network configurations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Ensuring packet-level communication quality is vital for ultra-reliable, low-latency communications (URLLC) in large-scale industrial wireless networks. We enhance the Local Deadline Partition (LDP) algorithm by introducing a CNN-based dynamic priority prediction mechanism for improved interference coordination in multi-cell, multi-channel networks. Unlike LDP's static priorities, our approach uses a Convolutional Neural Network and graph coloring to adaptively assign link priorities based on real-time traffic, transmission opportunities, and network conditions. Assuming that first training phase is performed offline, our approach introduced minimal overhead, while enabling more efficient resource allocation, boosting network capacity, SINR, and schedulability. Simulation results show SINR gains of up to 113\%, 94\%, and 49\% over LDP across three network configurations, highlighting its effectiveness for complex URLLC scenarios.
Related papers
- GCN-Driven Reinforcement Learning for Probabilistic Real-Time Guarantees in Industrial URLLC [0.0]
We enhance the Local Deadline Partition (LDP) algorithm by introducing a Graph Convolutional Network (GCN) integrated with a Deep Q-Network (DQN) reinforcement learning framework.<n>We show that our GCN-DQN model achieves mean SINR improvements of 179.6%, 197.4%, and 175.2% over LDP across three network configurations.
arXiv Detail & Related papers (2025-06-17T22:48:22Z) - Hyperdimensional Computing Empowered Federated Foundation Model over Wireless Networks for Metaverse [56.384390765357004]
We propose an integrated federated split learning and hyperdimensional computing framework for emerging foundation models.
This novel approach reduces communication costs, computation load, and privacy risks, making it suitable for resource-constrained edge devices in the Metaverse.
arXiv Detail & Related papers (2024-08-26T17:03:14Z) - A Distributed Neural Linear Thompson Sampling Framework to Achieve URLLC
in Industrial IoT [16.167107624956294]
Industrial Internet of Things (IIoT) networks will provide Ultra-Reliable Low-Latency Communication (URLLC) to support critical processes.
Standard protocols for allocating wireless resources may not optimize the latency-reliability trade-off, especially for uplink communication.
arXiv Detail & Related papers (2023-11-21T12:22:04Z) - Decentralized Learning over Wireless Networks: The Effect of Broadcast
with Random Access [56.91063444859008]
We investigate the impact of broadcast transmission and probabilistic random access policy on the convergence performance of D-SGD.
Our results demonstrate that optimizing the access probability to maximize the expected number of successful links is a highly effective strategy for accelerating the system convergence.
arXiv Detail & Related papers (2023-05-12T10:32:26Z) - Efficient Parallel Split Learning over Resource-constrained Wireless
Edge Networks [44.37047471448793]
In this paper, we advocate the integration of edge computing paradigm and parallel split learning (PSL)
We propose an innovative PSL framework, namely, efficient parallel split learning (EPSL) to accelerate model training.
We show that the proposed EPSL framework significantly decreases the training latency needed to achieve a target accuracy.
arXiv Detail & Related papers (2023-03-26T16:09:48Z) - Guaranteed Dynamic Scheduling of Ultra-Reliable Low-Latency Traffic via
Conformal Prediction [72.59079526765487]
The dynamic scheduling of ultra-reliable and low-latency traffic (URLLC) in the uplink can significantly enhance the efficiency of coexisting services.
The main challenge is posed by the uncertainty in the process of URLLC packet generation.
We introduce a novel scheduler for URLLC packets that provides formal guarantees on reliability and latency irrespective of the quality of the URLLC traffic predictor.
arXiv Detail & Related papers (2023-02-15T14:09:55Z) - Accuracy-Guaranteed Collaborative DNN Inference in Industrial IoT via
Deep Reinforcement Learning [10.223526707269537]
Collaboration among industrial Internet of Things (IoT) devices and edge networks is essential to support computation-intensive deep neural network (DNN) inference services.
In this paper, we investigate the collaborative inference problem in industrial IoT networks.
arXiv Detail & Related papers (2022-12-31T05:53:17Z) - A Reinforcement Learning Approach to Optimize Available Network
Bandwidth Utilization [3.254879465902239]
We present a novel approach to finding the optimum number of parallel TCP streams using deep reinforcement learning (RL)
Our RL-based algorithm can find near-optimal solutions 40% faster while achieving up to 15% higher throughput.
arXiv Detail & Related papers (2022-11-22T02:00:05Z) - Optimal Power Allocation for Rate Splitting Communications with Deep
Reinforcement Learning [61.91604046990993]
This letter introduces a novel framework to optimize the power allocation for users in a Rate Splitting Multiple Access network.
In the network, messages intended for users are split into different parts that are a single common part and respective private parts.
arXiv Detail & Related papers (2021-07-01T06:32:49Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
We consider the problem of scheduling in constrained queueing networks with a view to minimizing packet delay.
We use a policy gradient based reinforcement learning algorithm that produces a scheduler that performs better than the available atomic policies.
arXiv Detail & Related papers (2021-05-01T10:18:34Z) - LCP: A Low-Communication Parallelization Method for Fast Neural Network
Inference in Image Recognition [33.581285906182075]
We propose a low-communication parallelization (LCP) method in which models consist of several almost-independent and narrow branches.
We deploy LCP models on three distributed systems: AWS instances, Raspberry Pis, and PYNQ boards.
LCP models achieve a maximum and average speedups of 56x and 7x, compared to the originals, which could be improved by up to an average speedup of 33x.
arXiv Detail & Related papers (2020-03-13T19:52:44Z) - Wireless Power Control via Counterfactual Optimization of Graph Neural
Networks [124.89036526192268]
We consider the problem of downlink power control in wireless networks, consisting of multiple transmitter-receiver pairs communicating over a single shared wireless medium.
To mitigate the interference among concurrent transmissions, we leverage the network topology to create a graph neural network architecture.
We then use an unsupervised primal-dual counterfactual optimization approach to learn optimal power allocation decisions.
arXiv Detail & Related papers (2020-02-17T07:54:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.