Truncated Proximal Policy Optimization
- URL: http://arxiv.org/abs/2506.15050v1
- Date: Wed, 18 Jun 2025 01:21:38 GMT
- Title: Truncated Proximal Policy Optimization
- Authors: Tiantian Fan, Lingjun Liu, Yu Yue, Jiaze Chen, Chengyi Wang, Qiying Yu, Chi Zhang, Zhiqi Lin, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Bole Ma, Mofan Zhang, Gaohong Liu, Ru Zhang, Haotian Zhou, Cong Xie, Ruidong Zhu, Zhi Zhang, Xin Liu, Mingxuan Wang, Lin Yan, Yonghui Wu,
- Abstract summary: Truncated Proximal Policy Optimization (T-PPO) improves training efficiency by streamlining policy update and length-restricted response generation.<n>We propose Extended Generalized Advantage Estimation (EGAE) for advantage estimation derived from incomplete responses.<n>We demonstrate the effectiveness and efficacy of T-PPO on AIME 2024 with a 32B base model.
- Score: 43.965892659920364
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, test-time scaling Large Language Models (LLMs) have demonstrated exceptional reasoning capabilities across scientific and professional tasks by generating long chains-of-thought (CoT). As a crucial component for developing these reasoning models, reinforcement learning (RL), exemplified by Proximal Policy Optimization (PPO) and its variants, allows models to learn through trial and error. However, PPO can be time-consuming due to its inherent on-policy nature, which is further exacerbated by increasing response lengths. In this work, we propose Truncated Proximal Policy Optimization (T-PPO), a novel extension to PPO that improves training efficiency by streamlining policy update and length-restricted response generation. T-PPO mitigates the issue of low hardware utilization, an inherent drawback of fully synchronized long-generation procedures, where resources often sit idle during the waiting periods for complete rollouts. Our contributions are two-folds. First, we propose Extended Generalized Advantage Estimation (EGAE) for advantage estimation derived from incomplete responses while maintaining the integrity of policy learning. Second, we devise a computationally optimized mechanism that allows for the independent optimization of the policy and value models. By selectively filtering prompt and truncated tokens, this mechanism reduces redundant computations and accelerates the training process without sacrificing convergence performance. We demonstrate the effectiveness and efficacy of T-PPO on AIME 2024 with a 32B base model. The experimental results show that T-PPO improves the training efficiency of reasoning LLMs by up to 2.5x and outperforms its existing competitors.
Related papers
- On-Policy RL with Optimal Reward Baseline [109.47676554514193]
On-Policy RL with Optimal reward baseline (OPO) is a novel and simplified reinforcement learning algorithm.<n>OPO emphasizes the importance of exact on-policy training, which empirically stabilizes the training process and enhances exploration.<n>Results demonstrate OPO's superior performance and training stability without additional models or regularization terms.
arXiv Detail & Related papers (2025-05-29T15:58:04Z) - Accelerating RL for LLM Reasoning with Optimal Advantage Regression [52.0792918455501]
We propose a novel two-stage policy optimization framework that directly approximates the optimal advantage function.<n>$A$*-PO achieves competitive performance across a wide range of mathematical reasoning benchmarks.<n>It reduces training time by up to 2$times$ and peak memory usage by over 30% compared to PPO, GRPO, and REBEL.
arXiv Detail & Related papers (2025-05-27T03:58:50Z) - VerIPO: Cultivating Long Reasoning in Video-LLMs via Verifier-Gudied Iterative Policy Optimization [59.39976343879587]
VerIPO aims to gradually improve video LLMs' capacity for generating deep, long-term reasoning chains.<n>The training loop benefits from GRPO's expansive search and DPO's targeted optimization.<n>Our trained models exceed the direct inference of large-scale instruction-tuned Video-LLMs.
arXiv Detail & Related papers (2025-05-25T06:41:28Z) - CPPO: Accelerating the Training of Group Relative Policy Optimization-Based Reasoning Models [68.26281707780761]
This paper introduces Completion Pruning Policy Optimization (CPPO) to accelerate the training of reasoning models.<n>We show that CPPO achieves up to $8.32times$ speedup on GSM8K and $3.51times$ on Math while preserving or even enhancing the accuracy compared to the original GRPO.
arXiv Detail & Related papers (2025-03-28T11:30:05Z) - What's Behind PPO's Collapse in Long-CoT? Value Optimization Holds the Secret [3.410112345043215]
We propose Value-Calibrated PPO (VC-PPO) to address these issues.<n>Experiments on the American Invitational Mathematics Examination (AIME) show that VC-PPO significantly boosts PPO performance.
arXiv Detail & Related papers (2025-03-03T12:59:25Z) - VinePPO: Refining Credit Assignment in RL Training of LLMs [66.80143024475635]
We propose VinePPO, a straightforward approach that leverages the flexibility of language environments to compute unbiased Monte Carlo-based estimates.<n>Our method consistently outperforms PPO and other baselines across MATH and GSM8K datasets in less wall-clock time.
arXiv Detail & Related papers (2024-10-02T15:49:30Z) - Fine-Tuning Language Models with Advantage-Induced Policy Alignment [80.96507425217472]
We propose a novel algorithm for aligning large language models to human preferences.
We show that it consistently outperforms PPO in language tasks by a large margin.
We also provide a theoretical justification supporting the design of our loss function.
arXiv Detail & Related papers (2023-06-04T01:59:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.