Particle-Grid Neural Dynamics for Learning Deformable Object Models from RGB-D Videos
- URL: http://arxiv.org/abs/2506.15680v1
- Date: Wed, 18 Jun 2025 17:59:38 GMT
- Title: Particle-Grid Neural Dynamics for Learning Deformable Object Models from RGB-D Videos
- Authors: Kaifeng Zhang, Baoyu Li, Kris Hauser, Yunzhu Li,
- Abstract summary: We develop a neural dynamics framework that combines object particles and spatial grids in a hybrid representation.<n>We demonstrate that our model learns the dynamics of diverse objects from sparse-view RGB-D recordings of robot-object interactions.<n>Our approach outperforms state-of-the-art learning-based and physics-based simulators, particularly in scenarios with limited camera views.
- Score: 30.367498271886866
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modeling the dynamics of deformable objects is challenging due to their diverse physical properties and the difficulty of estimating states from limited visual information. We address these challenges with a neural dynamics framework that combines object particles and spatial grids in a hybrid representation. Our particle-grid model captures global shape and motion information while predicting dense particle movements, enabling the modeling of objects with varied shapes and materials. Particles represent object shapes, while the spatial grid discretizes the 3D space to ensure spatial continuity and enhance learning efficiency. Coupled with Gaussian Splattings for visual rendering, our framework achieves a fully learning-based digital twin of deformable objects and generates 3D action-conditioned videos. Through experiments, we demonstrate that our model learns the dynamics of diverse objects -- such as ropes, cloths, stuffed animals, and paper bags -- from sparse-view RGB-D recordings of robot-object interactions, while also generalizing at the category level to unseen instances. Our approach outperforms state-of-the-art learning-based and physics-based simulators, particularly in scenarios with limited camera views. Furthermore, we showcase the utility of our learned models in model-based planning, enabling goal-conditioned object manipulation across a range of tasks. The project page is available at https://kywind.github.io/pgnd .
Related papers
- PartRM: Modeling Part-Level Dynamics with Large Cross-State Reconstruction Model [23.768571323272152]
PartRM is a novel 4D reconstruction framework that simultaneously models appearance, geometry, and part-level motion from multi-view images of a static object.<n>We introduce the PartDrag-4D dataset, providing multi-view observations of part-level dynamics across over 20,000 states.<n> Experimental results show that PartRM establishes a new state-of-the-art in part-level motion learning and can be applied in manipulation tasks in robotics.
arXiv Detail & Related papers (2025-03-25T17:59:58Z) - Dynamic 3D Gaussian Tracking for Graph-Based Neural Dynamics Modeling [10.247075501610492]
We introduce a framework to learn object dynamics directly from multi-view RGB videos.
We train a particle-based dynamics model using Graph Neural Networks.
Our method can predict object motions under varying initial configurations and unseen robot actions.
arXiv Detail & Related papers (2024-10-24T17:02:52Z) - Dynamic Scene Understanding through Object-Centric Voxelization and Neural Rendering [57.895846642868904]
We present a 3D generative model named DynaVol-S for dynamic scenes that enables object-centric learning.<n>voxelization infers per-object occupancy probabilities at individual spatial locations.<n>Our approach integrates 2D semantic features to create 3D semantic grids, representing the scene through multiple disentangled voxel grids.
arXiv Detail & Related papers (2024-07-30T15:33:58Z) - DO3D: Self-supervised Learning of Decomposed Object-aware 3D Motion and
Depth from Monocular Videos [76.01906393673897]
We propose a self-supervised method to jointly learn 3D motion and depth from monocular videos.
Our system contains a depth estimation module to predict depth, and a new decomposed object-wise 3D motion (DO3D) estimation module to predict ego-motion and 3D object motion.
Our model delivers superior performance in all evaluated settings.
arXiv Detail & Related papers (2024-03-09T12:22:46Z) - 3D-IntPhys: Towards More Generalized 3D-grounded Visual Intuitive
Physics under Challenging Scenes [68.66237114509264]
We present a framework capable of learning 3D-grounded visual intuitive physics models from videos of complex scenes with fluids.
We show our model can make long-horizon future predictions by learning from raw images and significantly outperforms models that do not employ an explicit 3D representation space.
arXiv Detail & Related papers (2023-04-22T19:28:49Z) - ACID: Action-Conditional Implicit Visual Dynamics for Deformable Object
Manipulation [135.10594078615952]
We introduce ACID, an action-conditional visual dynamics model for volumetric deformable objects.
A benchmark contains over 17,000 action trajectories with six types of plush toys and 78 variants.
Our model achieves the best performance in geometry, correspondence, and dynamics predictions.
arXiv Detail & Related papers (2022-03-14T04:56:55Z) - 3D Neural Scene Representations for Visuomotor Control [78.79583457239836]
We learn models for dynamic 3D scenes purely from 2D visual observations.
A dynamics model, constructed over the learned representation space, enables visuomotor control for challenging manipulation tasks.
arXiv Detail & Related papers (2021-07-08T17:49:37Z) - Real-time Deep Dynamic Characters [95.5592405831368]
We propose a deep videorealistic 3D human character model displaying highly realistic shape, motion, and dynamic appearance.
We use a novel graph convolutional network architecture to enable motion-dependent deformation learning of body and clothing.
We show that our model creates motion-dependent surface deformations, physically plausible dynamic clothing deformations, as well as video-realistic surface textures at a much higher level of detail than previous state of the art approaches.
arXiv Detail & Related papers (2021-05-04T23:28:55Z) - 3D-OES: Viewpoint-Invariant Object-Factorized Environment Simulators [24.181604511269096]
We propose an action-conditioned dynamics model that predicts scene changes caused by object and agent interactions in a viewpoint-in 3D neural scene representation space.
In this space, objects do not interfere with one another and their appearance persists over time and across viewpoints.
We show our model generalizes well its predictions across varying number and appearances of interacting objects as well as across camera viewpoints.
arXiv Detail & Related papers (2020-11-12T16:15:52Z) - Hindsight for Foresight: Unsupervised Structured Dynamics Models from
Physical Interaction [24.72947291987545]
Key challenge for an agent learning to interact with the world is to reason about physical properties of objects.
We propose a novel approach for modeling the dynamics of a robot's interactions directly from unlabeled 3D point clouds and images.
arXiv Detail & Related papers (2020-08-02T11:04:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.