Global Context-aware Representation Learning for Spatially Resolved Transcriptomics
- URL: http://arxiv.org/abs/2506.15698v2
- Date: Mon, 23 Jun 2025 07:46:50 GMT
- Title: Global Context-aware Representation Learning for Spatially Resolved Transcriptomics
- Authors: Yunhak Oh, Junseok Lee, Yeongmin Kim, Sangwoo Seo, Namkyeong Lee, Chanyoung Park,
- Abstract summary: We propose Spotscape, a novel framework that introduces the Similarity Telescope module to capture global relationships between multiple spots.<n>We also propose a similarity scaling strategy to regulate the distances between intra- and inter-slice spots, facilitating effective multi-slice integration.
- Score: 19.594447007588606
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatially Resolved Transcriptomics (SRT) is a cutting-edge technique that captures the spatial context of cells within tissues, enabling the study of complex biological networks. Recent graph-based methods leverage both gene expression and spatial information to identify relevant spatial domains. However, these approaches fall short in obtaining meaningful spot representations, especially for spots near spatial domain boundaries, as they heavily emphasize adjacent spots that have minimal feature differences from an anchor node. To address this, we propose Spotscape, a novel framework that introduces the Similarity Telescope module to capture global relationships between multiple spots. Additionally, we propose a similarity scaling strategy to regulate the distances between intra- and inter-slice spots, facilitating effective multi-slice integration. Extensive experiments demonstrate the superiority of Spotscape in various downstream tasks, including single-slice and multi-slice scenarios. Our code is available at the following link: https: //github.com/yunhak0/Spotscape.
Related papers
- Spatial Semantic Recurrent Mining for Referring Image Segmentation [63.34997546393106]
We propose Stextsuperscript2RM to achieve high-quality cross-modality fusion.
It follows a working strategy of trilogy: distributing language feature, spatial semantic recurrent coparsing, and parsed-semantic balancing.
Our proposed method performs favorably against other state-of-the-art algorithms.
arXiv Detail & Related papers (2024-05-15T00:17:48Z) - SINCERE: Sequential Interaction Networks representation learning on
Co-Evolving RiEmannian manifolds [9.710773626459718]
SINCERE is a novel method representing Sequential Interaction Networks on Co-Evolving RiEmannian manifold.
It takes the user and item embedding trajectories in respective spaces into account, and emphasizes on the space evolvement that how curvature changes over time.
Experiments on several real-world datasets demonstrate the promising performance of SINCERE over the state-of-the-art sequential interaction prediction methods.
arXiv Detail & Related papers (2023-05-06T00:38:29Z) - Learning to Aggregate Multi-Scale Context for Instance Segmentation in
Remote Sensing Images [28.560068780733342]
A novel context aggregation network (CATNet) is proposed to improve the feature extraction process.
The proposed model exploits three lightweight plug-and-play modules, namely dense feature pyramid network (DenseFPN), spatial context pyramid ( SCP), and hierarchical region of interest extractor (HRoIE)
arXiv Detail & Related papers (2021-11-22T08:55:25Z) - SpaceMeshLab: Spatial Context Memoization and Meshgrid Atrous
Convolution Consensus for Semantic Segmentation [11.571698215510152]
We propose a bypassing branch for spatial context by retaining the input dimension and constantly communicating its spatial context.
We also propose Meshgrid Atrous Convolution Consensus (MetroCon2) which brings multi-scale scheme into fine-grained multi-scale object context.
arXiv Detail & Related papers (2021-06-08T00:38:02Z) - DiffusionNet: Discretization Agnostic Learning on Surfaces [48.658589779470454]
We introduce a new approach to deep learning on 3D surfaces, based on the insight that a simple diffusion layer is highly effective for spatial communication.
The resulting networks automatically generalize across different samplings and resolutions of a surface.
We focus primarily on triangle mesh surfaces, and demonstrate state-of-the-art results for a variety of tasks including surface classification, segmentation, and non-rigid correspondence.
arXiv Detail & Related papers (2020-12-01T23:24:22Z) - SIRI: Spatial Relation Induced Network For Spatial Description
Resolution [64.38872296406211]
We propose a novel relationship induced (SIRI) network for language-guided localization.
We show that our method is around 24% better than the state-of-the-art method in terms of accuracy, measured by an 80-pixel radius.
Our method also generalizes well on our proposed extended dataset collected using the same settings as Touchdown.
arXiv Detail & Related papers (2020-10-27T14:04:05Z) - Affinity Space Adaptation for Semantic Segmentation Across Domains [57.31113934195595]
In this paper, we address the problem of unsupervised domain adaptation (UDA) in semantic segmentation.
Motivated by the fact that source and target domain have invariant semantic structures, we propose to exploit such invariance across domains.
We develop two affinity space adaptation strategies: affinity space cleaning and adversarial affinity space alignment.
arXiv Detail & Related papers (2020-09-26T10:28:11Z) - Co-Saliency Spatio-Temporal Interaction Network for Person
Re-Identification in Videos [85.6430597108455]
We propose a novel Co-Saliency Spatio-Temporal Interaction Network (CSTNet) for person re-identification in videos.
It captures the common salient foreground regions among video frames and explores the spatial-temporal long-range context interdependency from such regions.
Multiple spatialtemporal interaction modules within CSTNet are proposed, which exploit the spatial and temporal long-range context interdependencies on such features and spatial-temporal information correlation.
arXiv Detail & Related papers (2020-04-10T10:23:58Z) - Spatial Attention Pyramid Network for Unsupervised Domain Adaptation [66.75008386980869]
Unsupervised domain adaptation is critical in various computer vision tasks.
We design a new spatial attention pyramid network for unsupervised domain adaptation.
Our method performs favorably against the state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2020-03-29T09:03:23Z) - Universal-RCNN: Universal Object Detector via Transferable Graph R-CNN [117.80737222754306]
We present a novel universal object detector called Universal-RCNN.
We first generate a global semantic pool by integrating all high-level semantic representation of all the categories.
An Intra-Domain Reasoning Module learns and propagates the sparse graph representation within one dataset guided by a spatial-aware GCN.
arXiv Detail & Related papers (2020-02-18T07:57:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.