Implicit neural representations for accurate estimation of the standard model of white matter
- URL: http://arxiv.org/abs/2506.15762v1
- Date: Wed, 18 Jun 2025 15:40:42 GMT
- Title: Implicit neural representations for accurate estimation of the standard model of white matter
- Authors: Tom Hendriks, Gerrit Arends, Edwin Versteeg, Anna Vilanova, Maxime Chamberland, Chantal M. W. Tax,
- Abstract summary: The Standard Model (SM) of white matter aims to disentangle dMRI signal contributions from intra- and extra-axonal water compartments.<n>Due to the model its high-dimensional nature, extensive acquisition protocols with multiple b-values and diffusion shapes are typically required to mitigate parameter degeneracies.<n>This work achieves a novel estimation framework based on implicit neural representations (INRs), which incorporate regularization through the sinusoidal encoding of the input coordinates.
- Score: 0.25128687379089687
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Diffusion magnetic resonance imaging (dMRI) enables non-invasive investigation of tissue microstructure. The Standard Model (SM) of white matter aims to disentangle dMRI signal contributions from intra- and extra-axonal water compartments. However, due to the model its high-dimensional nature, extensive acquisition protocols with multiple b-values and diffusion tensor shapes are typically required to mitigate parameter degeneracies. Even then, accurate estimation remains challenging due to noise. This work introduces a novel estimation framework based on implicit neural representations (INRs), which incorporate spatial regularization through the sinusoidal encoding of the input coordinates. The INR method is evaluated on both synthetic and in vivo datasets and compared to parameter estimates using cubic polynomials, supervised neural networks, and nonlinear least squares. Results demonstrate superior accuracy of the INR method in estimating SM parameters, particularly in low signal-to-noise conditions. Additionally, spatial upsampling of the INR can represent the underlying dataset anatomically plausibly in a continuous way, which is unattainable with linear or cubic interpolation. The INR is fully unsupervised, eliminating the need for labeled training data. It achieves fast inference ($\sim$6 minutes), is robust to both Gaussian and Rician noise, supports joint estimation of SM kernel parameters and the fiber orientation distribution function with spherical harmonics orders up to at least 8 and non-negativity constraints, and accommodates spatially varying acquisition protocols caused by magnetic gradient non-uniformities. The combination of these properties along with the possibility to easily adapt the framework to other dMRI models, positions INRs as a potentially important tool for analyzing and interpreting diffusion MRI data.
Related papers
- A Comprehensive Framework for Uncertainty Quantification of Voxel-wise Supervised Models in IVIM MRI [33.7054351451505]
We propose a probabilistic deep learning framework based on Deep Ensembles of Mixture Density Networks (MDNs)<n>MDNs produced more calibrated and sharper predictive distributions for the diffusion coefficient D and fraction f parameters, although slight overconfidence was observed in pseudo-diffusion coefficient D*.<n>We present a comprehensive framework for IVIM fitting with uncertainty quantification, which enables the identification and interpretation of unreliable estimates.
arXiv Detail & Related papers (2025-08-06T16:08:55Z) - Latent Diffusion Model Based Denoising Receiver for 6G Semantic Communication: From Stochastic Differential Theory to Application [55.42071552739813]
A novel semantic communication framework empowered by generative artificial intelligence (GAI) is proposed.<n>A theoretical foundation is established based on differential equations (SDEs)<n>A closed-form analytical relationship between the signal-to-noise ratio (SNR) and the denoising timestep is derived.<n>To address the distribution mismatch between the received signal and the DM's training data, a mathematically principled scaling mechanism is introduced.
arXiv Detail & Related papers (2025-06-06T03:20:32Z) - A Steerable Deep Network for Model-Free Diffusion MRI Registration [4.813333335683418]
We present a novel, deep learning framework for model-free, nonrigid registration of raw diffusion MRI data.<n>This work establishes a foundation for data-driven, geometry-aware dMRI registration directly in the acquisition space.
arXiv Detail & Related papers (2025-01-08T19:18:44Z) - Highly Accelerated MRI via Implicit Neural Representation Guided Posterior Sampling of Diffusion Models [2.5412006057370893]
Implicit neural representation (INR) has emerged as a powerful paradigm for solving inverse problems.
Our proposed framework can be a generalizable framework to solve inverse problems in other medical imaging tasks.
arXiv Detail & Related papers (2024-07-03T01:37:56Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
We propose a lightweight module called Dual Attention Module (DAM) for capturing cross-dimension interaction relationships in-temporal skeletal data.
It employs the frame attention mechanism to identify the most significant frames and the skeleton attention mechanism to capture broader relationships across fixed partitions with minimal parameters and flops.
arXiv Detail & Related papers (2024-06-05T06:18:03Z) - Learning Radio Environments by Differentiable Ray Tracing [56.40113938833999]
We introduce a novel gradient-based calibration method, complemented by differentiable parametrizations of material properties, scattering and antenna patterns.
We have validated our method using both synthetic data and real-world indoor channel measurements, employing a distributed multiple-input multiple-output (MIMO) channel sounder.
arXiv Detail & Related papers (2023-11-30T13:50:21Z) - SMRD: SURE-based Robust MRI Reconstruction with Diffusion Models [76.43625653814911]
Diffusion models have gained popularity for accelerated MRI reconstruction due to their high sample quality.
They can effectively serve as rich data priors while incorporating the forward model flexibly at inference time.
We introduce SURE-based MRI Reconstruction with Diffusion models (SMRD) to enhance robustness during testing.
arXiv Detail & Related papers (2023-10-03T05:05:35Z) - How can spherical CNNs benefit ML-based diffusion MRI parameter
estimation? [2.4417196796959906]
Spherical convolutional neural networks (S-CNN) offer distinct advantages over conventional fully-connected networks (FCN)
Current clinical practice commonly acquires dMRI data consisting of only 6 diffusion weighted images (DWIs)
arXiv Detail & Related papers (2022-07-01T17:49:26Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
We conduct experiments on three publicly available datasets and evaluate the effect of different preprocessing steps in deep neural networks.
Our results demonstrate that most popular standardization steps add no value to the network performance.
We suggest that image intensity normalization approaches do not contribute to model accuracy because of the reduction of signal variance with image standardization.
arXiv Detail & Related papers (2022-04-11T17:29:36Z) - Parameter estimation for WMTI-Watson model of white matter using
encoder-decoder recurrent neural network [0.0]
In this study, we evaluate the performance of NLLS, the RNN-based method and a multilayer perceptron (MLP) on datasets rat and human brain.
We showed that the proposed RNN-based fitting approach had the advantage of highly reduced computation time over NLLS.
arXiv Detail & Related papers (2022-03-01T16:33:15Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Physics-informed neural networks for myocardial perfusion MRI
quantification [3.318100528966778]
This study introduces physics-informed neural networks (PINNs) as a means to perform myocardial perfusion MR quantification.
PINNs can be trained to fit the observed perfusion MR data while respecting the underlying physical conservation laws.
arXiv Detail & Related papers (2020-11-25T16:02:52Z) - Deep Networks for Direction-of-Arrival Estimation in Low SNR [89.45026632977456]
We introduce a Convolutional Neural Network (CNN) that is trained from mutli-channel data of the true array manifold matrix.
We train a CNN in the low-SNR regime to predict DoAs across all SNRs.
Our robust solution can be applied in several fields, ranging from wireless array sensors to acoustic microphones or sonars.
arXiv Detail & Related papers (2020-11-17T12:52:18Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.