Fractional Reasoning via Latent Steering Vectors Improves Inference Time Compute
- URL: http://arxiv.org/abs/2506.15882v1
- Date: Wed, 18 Jun 2025 21:15:59 GMT
- Title: Fractional Reasoning via Latent Steering Vectors Improves Inference Time Compute
- Authors: Sheng Liu, Tianlang Chen, Pan Lu, Haotian Ye, Yizheng Chen, Lei Xing, James Zou,
- Abstract summary: We propose Fractional Reasoning, a framework that enables continuous control over reasoning intensity at inference time.<n>Our method operates by extracting the latent steering vector associated with deeper reasoning and reapplying it with a tunable scaling factor.<n> Experiments on GSM8K, MATH500, and GPQA demonstrate that Fractional Reasoning consistently improves performance across diverse reasoning tasks and models.
- Score: 57.16286134405821
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Test-time compute has emerged as a powerful paradigm for improving the performance of large language models (LLMs), where generating multiple outputs or refining individual chains can significantly boost answer accuracy. However, existing methods like Best-of-N, majority voting, and self-reflection typically apply reasoning in a uniform way across inputs, overlooking the fact that different problems may require different levels of reasoning depth. In this work, we propose Fractional Reasoning, a training-free and model-agnostic framework that enables continuous control over reasoning intensity at inference time, going beyond the limitations of fixed instructional prompts. Our method operates by extracting the latent steering vector associated with deeper reasoning and reapplying it with a tunable scaling factor, allowing the model to tailor its reasoning process to the complexity of each input. This supports two key modes of test-time scaling: (1) improving output quality in breadth-based strategies (e.g., Best-of-N, majority voting), and (2) enhancing the correctness of individual reasoning chains in depth-based strategies (e.g., self-reflection). Experiments on GSM8K, MATH500, and GPQA demonstrate that Fractional Reasoning consistently improves performance across diverse reasoning tasks and models.
Related papers
- PixelThink: Towards Efficient Chain-of-Pixel Reasoning [70.32510083790069]
PixelThink is a simple yet effective scheme that integrates externally estimated task difficulty and internally measured model uncertainty.<n>It learns to compress reasoning length in accordance with scene complexity and predictive confidence.<n> Experimental results demonstrate that the proposed approach improves both reasoning efficiency and overall segmentation performance.
arXiv Detail & Related papers (2025-05-29T17:55:49Z) - Stepwise Reasoning Checkpoint Analysis: A Test Time Scaling Method to Enhance LLMs' Reasoning [81.50681925980135]
We propose Stepwise Reasoning Checkpoint Analysis (SRCA), a framework that introduces checkpoints between reasoning steps.<n>It incorporates two key strategies: (1) Answer-Clustered Search, which groups reasoning paths by their intermediate checkpoint answers to maintain diversity while ensuring quality, and (2) Checkpoint Candidate Augmentation, which leverages all intermediate answers for final decision-making.<n>Our approach effectively reduces path homogenization and creates a fault-tolerant mechanism by utilizing high-quality intermediate results.
arXiv Detail & Related papers (2025-05-23T12:42:50Z) - Fractured Chain-of-Thought Reasoning [61.647243580650446]
We introduce Fractured Sampling, a unified inference-time strategy that interpolates between full CoT and solution-only sampling.<n>We show that Fractured Sampling consistently achieves superior accuracy-cost trade-offs, yielding steep log-linear scaling gains in Pass@k versus token budget.
arXiv Detail & Related papers (2025-05-19T11:30:41Z) - Think Deep, Think Fast: Investigating Efficiency of Verifier-free Inference-time-scaling Methods [39.89239733570008]
This work conducts a comprehensive analysis of inference-time scaling methods for both reasoning and non-reasoning models.<n>We find that non-reasoning models, even with an extremely high inference budget, still fall substantially behind reasoning models.<n>For reasoning models, majority voting proves to be a robust inference strategy, generally competitive or outperforming other more sophisticated ITC methods.
arXiv Detail & Related papers (2025-04-18T19:32:55Z) - Quantifying Logical Consistency in Transformers via Query-Key Alignment [20.636818928993684]
We propose a novel, lightweight evaluation strategy for logical reasoning.<n>By computing a single forward pass and extracting a "QK-score" from carefully chosen heads, our method reveals latent representations that reliably separate valid from invalid inferences.
arXiv Detail & Related papers (2025-02-24T10:02:50Z) - BRiTE: Bootstrapping Reinforced Thinking Process to Enhance Language Model Reasoning [78.63421517563056]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks.<n>We present a unified probabilistic framework that formalizes LLM reasoning through a novel graphical model.<n>We introduce the Bootstrapping Reinforced Thinking Process (BRiTE) algorithm, which works in two steps.
arXiv Detail & Related papers (2025-01-31T02:39:07Z) - Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [49.362750475706235]
Reinforcement Learning (RL) plays a crucial role in aligning large language models with human preferences and improving their ability to perform complex tasks.<n>We introduce Direct Q-function Optimization (DQO), which formulates the response generation process as a Markov Decision Process (MDP) and utilizes the soft actor-critic (SAC) framework to optimize a Q-function directly parameterized by the language model.<n> Experimental results on two math problem-solving datasets, GSM8K and MATH, demonstrate that DQO outperforms previous methods, establishing it as a promising offline reinforcement learning approach for aligning language models.
arXiv Detail & Related papers (2024-10-11T23:29:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.