Reranking-based Generation for Unbiased Perspective Summarization
- URL: http://arxiv.org/abs/2506.15925v1
- Date: Thu, 19 Jun 2025 00:01:43 GMT
- Title: Reranking-based Generation for Unbiased Perspective Summarization
- Authors: Narutatsu Ri, Nicholas Deas, Kathleen McKeown,
- Abstract summary: We develop a test set for benchmarking metric reliability using human annotations.<n>We show that traditional metrics underperform compared to language model-based metrics, which prove to be strong evaluators.<n>Our findings aim to contribute to the reliable evaluation and development of perspective summarization methods.
- Score: 10.71668103641552
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating unbiased summaries in real-world settings such as political perspective summarization remains a crucial application of Large Language Models (LLMs). Yet, existing evaluation frameworks rely on traditional metrics for measuring key attributes such as coverage and faithfulness without verifying their applicability, and efforts to develop improved summarizers are still nascent. We address these gaps by (1) identifying reliable metrics for measuring perspective summary quality, and (2) investigating the efficacy of LLM-based methods beyond zero-shot inference. Namely, we build a test set for benchmarking metric reliability using human annotations and show that traditional metrics underperform compared to language model-based metrics, which prove to be strong evaluators. Using these metrics, we show that reranking-based methods yield strong results, and preference tuning with synthetically generated and reranking-labeled data further boosts performance. Our findings aim to contribute to the reliable evaluation and development of perspective summarization methods.
Related papers
- Contextual Metric Meta-Evaluation by Measuring Local Metric Accuracy [52.261323452286554]
We introduce a method for contextual metric meta-evaluation by comparing the local metric accuracy of evaluation metrics.<n>Across translation, speech recognition, and ranking tasks, we demonstrate that the local metric accuracies vary both in absolute value and relative effectiveness as we shift across evaluation contexts.
arXiv Detail & Related papers (2025-03-25T16:42:25Z) - Verify with Caution: The Pitfalls of Relying on Imperfect Factuality Metrics [22.84997018004618]
We re-evaluate five state-of-the-art factuality metrics on a collection of 11 datasets for summarization, retrieval-augmented generation, and question answering.<n>We find that these evaluators are inconsistent with each other and often misestimate system-level performance.
arXiv Detail & Related papers (2025-01-24T19:17:06Z) - A Critical Look at Meta-evaluating Summarisation Evaluation Metrics [11.541368732416506]
We argue that the time is ripe to build more diverse benchmarks that enable the development of more robust evaluation metrics.
We call for research focusing on user-centric quality dimensions that consider the generated summary's communicative goal.
arXiv Detail & Related papers (2024-09-29T01:30:13Z) - Benchmarks as Microscopes: A Call for Model Metrology [76.64402390208576]
Modern language models (LMs) pose a new challenge in capability assessment.
To be confident in our metrics, we need a new discipline of model metrology.
arXiv Detail & Related papers (2024-07-22T17:52:12Z) - Learning Evaluation Models from Large Language Models for Sequence Generation [61.8421748792555]
We propose a three-stage evaluation model training method that utilizes large language models to generate labeled data for model-based metric development.<n> Experimental results on the SummEval benchmark demonstrate that CSEM can effectively train an evaluation model without human-labeled data.
arXiv Detail & Related papers (2023-08-08T16:41:16Z) - KPEval: Towards Fine-Grained Semantic-Based Keyphrase Evaluation [69.57018875757622]
We propose KPEval, a comprehensive evaluation framework consisting of four critical aspects: reference agreement, faithfulness, diversity, and utility.
Using KPEval, we re-evaluate 23 keyphrase systems and discover that established model comparison results have blind-spots.
arXiv Detail & Related papers (2023-03-27T17:45:38Z) - ED-FAITH: Evaluating Dialogue Summarization on Faithfulness [35.73012379398233]
We first present a systematic study of faithfulness metrics for dialogue summarization.
We observe that most metrics correlate poorly with human judgements despite performing well on news datasets.
We propose T0-Score -- a new metric for faithfulness evaluation.
arXiv Detail & Related papers (2022-11-15T19:33:50Z) - On the Limitations of Reference-Free Evaluations of Generated Text [64.81682222169113]
We show that reference-free metrics are inherently biased and limited in their ability to evaluate generated text.
We argue that they should not be used to measure progress on tasks like machine translation or summarization.
arXiv Detail & Related papers (2022-10-22T22:12:06Z) - TRUE: Re-evaluating Factual Consistency Evaluation [29.888885917330327]
We introduce TRUE: a comprehensive study of factual consistency metrics on a standardized collection of existing texts from diverse tasks.
Our standardization enables an example-level meta-evaluation protocol that is more actionable and interpretable than previously reported correlations.
Across diverse state-of-the-art metrics and 11 datasets we find that large-scale NLI and question generation-and-answering-based approaches achieve strong and complementary results.
arXiv Detail & Related papers (2022-04-11T10:14:35Z) - REAM$\sharp$: An Enhancement Approach to Reference-based Evaluation
Metrics for Open-domain Dialog Generation [63.46331073232526]
We present an enhancement approach to Reference-based EvAluation Metrics for open-domain dialogue systems.
A prediction model is designed to estimate the reliability of the given reference set.
We show how its predicted results can be helpful to augment the reference set, and thus improve the reliability of the metric.
arXiv Detail & Related papers (2021-05-30T10:04:13Z) - GO FIGURE: A Meta Evaluation of Factuality in Summarization [131.1087461486504]
We introduce GO FIGURE, a meta-evaluation framework for evaluating factuality evaluation metrics.
Our benchmark analysis on ten factuality metrics reveals that our framework provides a robust and efficient evaluation.
It also reveals that while QA metrics generally improve over standard metrics that measure factuality across domains, performance is highly dependent on the way in which questions are generated.
arXiv Detail & Related papers (2020-10-24T08:30:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.