TD3Net: A Temporal Densely Connected Multi-Dilated Convolutional Network for Lipreading
- URL: http://arxiv.org/abs/2506.16073v1
- Date: Thu, 19 Jun 2025 06:55:03 GMT
- Title: TD3Net: A Temporal Densely Connected Multi-Dilated Convolutional Network for Lipreading
- Authors: Byung Hoon Lee, Wooseok Shin, Sung Won Han,
- Abstract summary: We propose TD3Net, a temporal densely connected multi-dvolutional network that combines dense skip connections and temporal convolutions as the backend architecture.<n> Experimental results on a word-level lipreading task using two large publicly available datasets, Lip Reading in the Wild (LRW) and LRW-1000, indicate that the proposed method achieves performance comparable to state-of-the-art methods.
- Score: 5.768165707140847
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The word-level lipreading approach typically employs a two-stage framework with separate frontend and backend architectures to model dynamic lip movements. Each component has been extensively studied, and in the backend architecture, temporal convolutional networks (TCNs) have been widely adopted in state-of-the-art methods. Recently, dense skip connections have been introduced in TCNs to mitigate the limited density of the receptive field, thereby improving the modeling of complex temporal representations. However, their performance remains constrained owing to potential information loss regarding the continuous nature of lip movements, caused by blind spots in the receptive field. To address this limitation, we propose TD3Net, a temporal densely connected multi-dilated convolutional network that combines dense skip connections and multi-dilated temporal convolutions as the backend architecture. TD3Net covers a wide and dense receptive field without blind spots by applying different dilation factors to skip-connected features. Experimental results on a word-level lipreading task using two large publicly available datasets, Lip Reading in the Wild (LRW) and LRW-1000, indicate that the proposed method achieves performance comparable to state-of-the-art methods. It achieved higher accuracy with fewer parameters and lower floating-point operations compared to existing TCN-based backend architectures. Moreover, visualization results suggest that our approach effectively utilizes diverse temporal features while preserving temporal continuity, presenting notable advantages in lipreading systems. The code is available at our GitHub repository: https://github.com/Leebh-kor/TD3Net-A-Temporal-Densely-Connected-Multi-dilated-Convolutional-Network -for-Lipreading
Related papers
- TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - Intensity Profile Projection: A Framework for Continuous-Time
Representation Learning for Dynamic Networks [50.2033914945157]
We present a representation learning framework, Intensity Profile Projection, for continuous-time dynamic network data.
The framework consists of three stages: estimating pairwise intensity functions, learning a projection which minimises a notion of intensity reconstruction error.
Moreoever, we develop estimation theory providing tight control on the error of any estimated trajectory, indicating that the representations could even be used in quite noise-sensitive follow-on analyses.
arXiv Detail & Related papers (2023-06-09T15:38:25Z) - DyCSC: Modeling the Evolutionary Process of Dynamic Networks Based on
Cluster Structure [1.005130974691351]
We propose a novel temporal network embedding method named Dynamic Cluster Structure Constraint model (DyCSC)
DyCSC captures the evolution of temporal networks by imposing a temporal constraint on the tendency of the nodes in the network to a given number of clusters.
It consistently outperforms competing methods by significant margins in multiple temporal link prediction tasks.
arXiv Detail & Related papers (2022-10-23T10:23:08Z) - Multi-scale temporal network for continuous sign language recognition [10.920363368754721]
Continuous Sign Language Recognition is a challenging research task due to the lack of accurate annotation on the temporal sequence of sign language data.
This paper proposes a multi-scale temporal network (MSTNet) to extract more accurate temporal features.
Experimental results on two publicly available datasets demonstrate that our method can effectively extract sign language features in an end-to-end manner without any prior knowledge.
arXiv Detail & Related papers (2022-04-08T06:14:22Z) - Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks [87.50632573601283]
We present a novel method for multi-view depth estimation from a single video.
Our method achieves temporally coherent depth estimation results by using a novel Epipolar Spatio-Temporal (EST) transformer.
To reduce the computational cost, inspired by recent Mixture-of-Experts models, we design a compact hybrid network.
arXiv Detail & Related papers (2020-11-26T04:04:21Z) - Multi-Temporal Convolutions for Human Action Recognition in Videos [83.43682368129072]
We present a novel temporal-temporal convolution block that is capable of extracting at multiple resolutions.
The proposed blocks are lightweight and can be integrated into any 3D-CNN architecture.
arXiv Detail & Related papers (2020-11-08T10:40:26Z) - Lip-reading with Densely Connected Temporal Convolutional Networks [61.66144695679362]
We present the Densely Connected Temporal Convolutional Network (DC-TCN) for lip-reading of isolated words.
Our method has achieved 88.36% accuracy on the Lip Reading in the Wild dataset and 43.65% on the LRW-1000 dataset.
arXiv Detail & Related papers (2020-09-29T18:08:15Z) - Searching Multi-Rate and Multi-Modal Temporal Enhanced Networks for
Gesture Recognition [89.0152015268929]
We propose the first neural architecture search (NAS)-based method for RGB-D gesture recognition.
The proposed method includes two key components: 1) enhanced temporal representation via the 3D Central Difference Convolution (3D-CDC) family, and optimized backbones for multi-modal-rate branches and lateral connections.
The resultant multi-rate network provides a new perspective to understand the relationship between RGB and depth modalities and their temporal dynamics.
arXiv Detail & Related papers (2020-08-21T10:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.