AGE-US: automated gestational age estimation based on fetal ultrasound images
- URL: http://arxiv.org/abs/2506.16256v1
- Date: Thu, 19 Jun 2025 12:15:06 GMT
- Title: AGE-US: automated gestational age estimation based on fetal ultrasound images
- Authors: César Díaz-Parga, Marta Nuñez-Garcia, Maria J. Carreira, Gabriel Bernardino, Nicolás Vila-Blanco,
- Abstract summary: Being born small carries significant health risks, including increased neonatal mortality and a higher likelihood of future cardiac diseases.<n>This study presents an interpretable deep learning-based method for automated gestational age calculation.
- Score: 0.695054745486515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Being born small carries significant health risks, including increased neonatal mortality and a higher likelihood of future cardiac diseases. Accurate estimation of gestational age is critical for monitoring fetal growth, but traditional methods, such as estimation based on the last menstrual period, are in some situations difficult to obtain. While ultrasound-based approaches offer greater reliability, they rely on manual measurements that introduce variability. This study presents an interpretable deep learning-based method for automated gestational age calculation, leveraging a novel segmentation architecture and distance maps to overcome dataset limitations and the scarcity of segmentation masks. Our approach achieves performance comparable to state-of-the-art models while reducing complexity, making it particularly suitable for resource-constrained settings and with limited annotated data. Furthermore, our results demonstrate that the use of distance maps is particularly suitable for estimating femur endpoints.
Related papers
- Fusing Radiomic Features with Deep Representations for Gestational Age Estimation in Fetal Ultrasound Images [5.626701242497243]
We present a novel feature fusion framework to estimate gestational age (GA) using fetal ultrasound images without any measurement information.<n>Our framework estimates GA with a mean absolute error of 8.0 days across three trimesters, outperforming current machine learning-based methods at these gestational ages.
arXiv Detail & Related papers (2025-06-25T13:23:35Z) - An on-production high-resolution longitudinal neonatal fingerprint database in Brazil [1.0180360161860078]
The neonatal period is critical for survival, requiring accurate and early identification to enable timely interventions such as vaccinations, HIV treatment, and nutrition programs.<n>Biometric solutions offer potential for child protection by helping to prevent baby swaps, locate missing children, and support national identity systems.<n>However, developing effective biometric identification systems for newborns remains a major challenge due to the physiological variability caused by finger growth, weight changes, and skin texture alterations during early development.
arXiv Detail & Related papers (2025-04-27T11:44:07Z) - Q-PART: Quasi-Periodic Adaptive Regression with Test-time Training for Pediatric Left Ventricular Ejection Fraction Regression [45.69922532213079]
We address the challenge of adaptive pediatric Left Ventricular Ejection Fraction (LVEF) assessment.<n>We propose a novel textbfQuasi-textbfPeriodic textbfAdaptive textbfRegression with textbfTest-time Training (Q-PART) framework.
arXiv Detail & Related papers (2025-03-06T06:24:51Z) - Extrapolating Prospective Glaucoma Fundus Images through Diffusion Model in Irregular Longitudinal Sequences [46.80977922491862]
The utilization of longitudinal datasets for glaucoma progression prediction offers a compelling approach to support early therapeutic interventions.
We propose a novel diffusion-based model to predict prospective images by extrapolating from existing longitudinal fundus images of patients.
arXiv Detail & Related papers (2024-10-28T15:31:47Z) - Deep Ensembles Meets Quantile Regression: Uncertainty-aware Imputation for Time Series [45.76310830281876]
We propose Quantile Sub-Ensembles, a novel method to estimate uncertainty with ensemble of quantile-regression-based task networks.
Our method not only produces accurate imputations that is robust to high missing rates, but also is computationally efficient due to the fast training of its non-generative model.
arXiv Detail & Related papers (2023-12-03T05:52:30Z) - Benchmarking common uncertainty estimation methods with
histopathological images under domain shift and label noise [62.997667081978825]
In high-risk environments, deep learning models need to be able to judge their uncertainty and reject inputs when there is a significant chance of misclassification.
We conduct a rigorous evaluation of the most commonly used uncertainty and robustness methods for the classification of Whole Slide Images.
We observe that ensembles of methods generally lead to better uncertainty estimates as well as an increased robustness towards domain shifts and label noise.
arXiv Detail & Related papers (2023-01-03T11:34:36Z) - Neurodevelopmental Phenotype Prediction: A State-of-the-Art Deep
Learning Model [0.0]
We apply a deep neural network to analyse the cortical surface data of neonates.
Our goal is to identify neurodevelopmental biomarkers and to predict gestational age at birth based on these biomarkers.
arXiv Detail & Related papers (2022-11-16T11:15:23Z) - LAE : Long-tailed Age Estimation [52.5745217752147]
We first formulate a simple standard baseline and build a much strong one by collecting the tricks in pre-training, data augmentation, model architecture, and so on.
Compared with the standard baseline, the proposed one significantly decreases the estimation errors.
We propose a two-stage training method named Long-tailed Age Estimation (LAE), which decouples the learning procedure into representation learning and classification.
arXiv Detail & Related papers (2021-10-25T09:05:44Z) - Medical Instrument Segmentation in 3D US by Hybrid Constrained
Semi-Supervised Learning [62.13520959168732]
We propose a semi-supervised learning framework for instrument segmentation in 3D US.
To achieve the SSL learning, a Dual-UNet is proposed to segment the instrument.
Our proposed method achieves Dice score of about 68.6%-69.1% and the inference time of about 1 sec. per volume.
arXiv Detail & Related papers (2021-07-30T07:59:45Z) - Deep learning in the ultrasound evaluation of neonatal respiratory
status [11.308283140003676]
Lung ultrasound imaging is reaching growing interest from the scientific community.
Image analysis and pattern recognition approaches have proven their ability to fully exploit the rich information contained in these data.
We present a thorough analysis of recent deep learning networks and training strategies carried out on a vast and challenging multicenter dataset.
arXiv Detail & Related papers (2020-10-31T18:57:55Z) - Preterm infants' pose estimation with spatio-temporal features [7.054093620465401]
This paper introduces the use of preterm-temporal features for limb detection and tracking.
It is the first study to use depth videos acquired in the actual clinical practice for limb-pose estimation.
arXiv Detail & Related papers (2020-05-08T09:51:22Z) - Deep Recurrent Model for Individualized Prediction of Alzheimer's
Disease Progression [4.034948808542701]
Alzheimer's disease (AD) is one of the major causes of dementia and is characterized by slow progression over several years.
We propose a novel computational framework that can predict the phenotypic measurements of MRI biomarkers and trajectories of clinical status.
arXiv Detail & Related papers (2020-05-06T08:08:00Z) - Hybrid Attention for Automatic Segmentation of Whole Fetal Head in
Prenatal Ultrasound Volumes [52.53375964591765]
We propose the first fully-automated solution to segment the whole fetal head in US volumes.
The segmentation task is firstly formulated as an end-to-end volumetric mapping under an encoder-decoder deep architecture.
We then combine the segmentor with a proposed hybrid attention scheme (HAS) to select discriminative features and suppress the non-informative volumetric features.
arXiv Detail & Related papers (2020-04-28T14:43:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.