Consumer-friendly EEG-based Emotion Recognition System: A Multi-scale Convolutional Neural Network Approach
- URL: http://arxiv.org/abs/2506.16448v1
- Date: Thu, 19 Jun 2025 16:33:31 GMT
- Title: Consumer-friendly EEG-based Emotion Recognition System: A Multi-scale Convolutional Neural Network Approach
- Authors: Tri Duc Ly, Gia H. Ngo,
- Abstract summary: EEG is a non-invasive, safe, and low-risk method to record electrophysiological signals inside the brain.<n>We propose a novel approach to utilize multi-scale convolutional neural networks to accomplish such tasks.
- Score: 1.3812010983144802
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: EEG is a non-invasive, safe, and low-risk method to record electrophysiological signals inside the brain. Especially with recent technology developments like dry electrodes, consumer-grade EEG devices, and rapid advances in machine learning, EEG is commonly used as a resource for automatic emotion recognition. With the aim to develop a deep learning model that can perform EEG-based emotion recognition in a real-life context, we propose a novel approach to utilize multi-scale convolutional neural networks to accomplish such tasks. By implementing feature extraction kernels with many ratio coefficients as well as a new type of kernel that learns key information from four separate areas of the brain, our model consistently outperforms the state-of-the-art TSception model in predicting valence, arousal, and dominance scores across many performance evaluation metrics.
Related papers
- Large Cognition Model: Towards Pretrained EEG Foundation Model [0.0]
We propose a transformer-based foundation model designed to generalize across diverse EEG datasets and downstream tasks.<n>Our findings highlight the potential of pretrained EEG foundation models to accelerate advancements in neuroscience, personalized medicine, and BCI technology.
arXiv Detail & Related papers (2025-02-11T04:28:10Z) - Hybrid Quantum Deep Learning Model for Emotion Detection using raw EEG Signal Analysis [0.0]
This work presents a hybrid quantum deep learning technique for emotion recognition.<n>Conventional EEG-based emotion recognition techniques are limited by noise and high-dimensional data complexity.<n>The model will be extended for real-time applications and multi-class categorization in future study.
arXiv Detail & Related papers (2024-11-19T17:44:04Z) - MEEG and AT-DGNN: Improving EEG Emotion Recognition with Music Introducing and Graph-based Learning [3.840859750115109]
We present the MEEG dataset, a multi-modal collection of music-induced electroencephalogram (EEG) recordings.
We introduce the Attention-based Temporal Learner with Dynamic Graph Neural Network (AT-DGNN), a novel framework for EEG-based emotion recognition.
arXiv Detail & Related papers (2024-07-08T01:58:48Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
This paper proposes a knowledge-driven cross-view contrastive learning framework (KDC2) to extract effective representations from EEG with limited labels.
The KDC2 method creates scalp and neural views of EEG signals, simulating the internal and external representation of brain activity.
By modeling prior neural knowledge based on neural information consistency theory, the proposed method extracts invariant and complementary neural knowledge to generate combined representations.
arXiv Detail & Related papers (2023-09-21T08:53:51Z) - A Convolutional Spiking Network for Gesture Recognition in
Brain-Computer Interfaces [0.8122270502556371]
We propose a simple yet efficient machine learning-based approach for the exemplary problem of hand gesture classification based on brain signals.
We demonstrate that this approach generalizes to different subjects with both EEG and ECoG data and achieves superior accuracy in the range of 92.74-97.07%.
arXiv Detail & Related papers (2023-04-21T16:23:40Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
We propose a neural network-based emotion recognition framework that uses a late fusion of transfer-learned and fine-tuned models from speech and text modalities.
We evaluate the effectiveness of our proposed multimodal approach on the interactive emotional dyadic motion capture dataset.
arXiv Detail & Related papers (2022-02-16T00:23:42Z) - Cross-individual Recognition of Emotions by a Dynamic Entropy based on
Pattern Learning with EEG features [2.863100352151122]
We propose a deep-learning framework denoted as a dynamic entropy-based pattern learning (DEPL) to abstract informative indicators pertaining to the neurophysiological features among multiple individuals.
DEPL enhanced the capability of representations generated by a deep convolutional neural network by modelling the interdependencies between the cortical locations of dynamical entropy based features.
arXiv Detail & Related papers (2020-09-26T07:22:07Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
We propose a transferable attention neural network (TANN) for EEG emotion recognition.
TANN learns the emotional discriminative information by highlighting the transferable EEG brain regions data and samples adaptively.
This can be implemented by measuring the outputs of multiple brain-region-level discriminators and one single sample-level discriminator.
arXiv Detail & Related papers (2020-09-21T02:42:30Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
It is crucial that the machine should be able to recognize the emotional state of the user with high accuracy.
Deep neural networks have been used with great success in recognizing emotions.
We present a new model for continuous emotion recognition based on facial expression recognition.
arXiv Detail & Related papers (2020-01-31T17:47:16Z) - EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies
on Signal Sensing Technologies and Computational Intelligence Approaches and
their Applications [65.32004302942218]
Brain-Computer Interface (BCI) is a powerful communication tool between users and systems.
Recent technological advances have increased interest in electroencephalographic (EEG) based BCI for translational and healthcare applications.
arXiv Detail & Related papers (2020-01-28T10:36:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.