Weight Factorization and Centralization for Continual Learning in Speech Recognition
- URL: http://arxiv.org/abs/2506.16574v1
- Date: Thu, 19 Jun 2025 19:59:24 GMT
- Title: Weight Factorization and Centralization for Continual Learning in Speech Recognition
- Authors: Enes Yavuz Ugan, Ngoc-Quan Pham, Alexander Waibel,
- Abstract summary: Continually training the models in a rehearsal-free, multilingual, and language agnostic condition, likely leads to catastrophic forgetting.<n>Inspired by the ability of human brains to learn and consolidate knowledge through the waking-sleeping cycle, we propose a continual learning approach.
- Score: 55.63455095283984
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern neural network based speech recognition models are required to continually absorb new data without re-training the whole system, especially in downstream applications using foundation models, having no access to the original training data. Continually training the models in a rehearsal-free, multilingual, and language agnostic condition, likely leads to catastrophic forgetting, when a seemingly insignificant disruption to the weights can destructively harm the quality of the models. Inspired by the ability of human brains to learn and consolidate knowledge through the waking-sleeping cycle, we propose a continual learning approach with two distinct phases: factorization and centralization, learning and merging knowledge accordingly. Our experiments on a sequence of varied code-switching datasets showed that the centralization stage can effectively prevent catastrophic forgetting by accumulating the knowledge in multiple scattering low-rank adapters.
Related papers
- Developmental Predictive Coding Model for Early Infancy Mono and Bilingual Vocal Continual Learning [69.8008228833895]
We propose a small-sized generative neural network equipped with a continual learning mechanism.<n>Our model prioritizes interpretability and demonstrates the advantages of online learning.
arXiv Detail & Related papers (2024-12-23T10:23:47Z) - Multi-Stage Knowledge Integration of Vision-Language Models for Continual Learning [79.46570165281084]
We propose a Multi-Stage Knowledge Integration network (MulKI) to emulate the human learning process in distillation methods.
MulKI achieves this through four stages, including Eliciting Ideas, Adding New Ideas, Distinguishing Ideas, and Making Connections.
Our method demonstrates significant improvements in maintaining zero-shot capabilities while supporting continual learning across diverse downstream tasks.
arXiv Detail & Related papers (2024-11-11T07:36:19Z) - Neuromimetic metaplasticity for adaptive continual learning [2.1749194587826026]
We propose a metaplasticity model inspired by human working memory to achieve catastrophic forgetting-free continual learning.
A key aspect of our approach involves implementing distinct types of synapses from stable to flexible, and randomly intermixing them to train synaptic connections with different degrees of flexibility.
The model achieved a balanced tradeoff between memory capacity and performance without requiring additional training or structural modifications.
arXiv Detail & Related papers (2024-07-09T12:21:35Z) - Infinite dSprites for Disentangled Continual Learning: Separating Memory Edits from Generalization [36.23065731463065]
We introduce Infinite dSprites, a parsimonious tool for creating continual classification benchmarks of arbitrary length.
We show that over a sufficiently long time horizon, the performance of all major types of continual learning methods deteriorates on this simple benchmark.
In a simple setting with direct supervision on the generative factors, we show how learning class-agnostic transformations offers a way to circumvent catastrophic forgetting.
arXiv Detail & Related papers (2023-12-27T22:05:42Z) - Class-wise Federated Unlearning: Harnessing Active Forgetting with Teacher-Student Memory Generation [11.638683787598817]
We propose a neuro-inspired federated unlearning framework based on active forgetting.<n>Our framework distinguishes itself from existing methods by utilizing new memories to overwrite old ones.<n>Our method achieves satisfactory unlearning completeness against backdoor attacks.
arXiv Detail & Related papers (2023-07-07T03:07:26Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
We propose a rehearsal-free CIL approach that learns continually via the synergy between two Complementary Learning Subnetworks.
Our method achieves competitive results against state-of-the-art methods, especially in accuracy gain, memory cost, training efficiency, and task-order.
arXiv Detail & Related papers (2023-06-21T01:43:25Z) - Continual Learning by Modeling Intra-Class Variation [33.30614232534283]
It has been observed that neural networks perform poorly when the data or tasks are presented sequentially.
Unlike humans, neural networks suffer greatly from catastrophic forgetting, making it impossible to perform life-long learning.
We examine memory-based continual learning and identify that large variation in the representation space is crucial for avoiding catastrophic forgetting.
arXiv Detail & Related papers (2022-10-11T12:17:43Z) - Critical Learning Periods for Multisensory Integration in Deep Networks [112.40005682521638]
We show that the ability of a neural network to integrate information from diverse sources hinges critically on being exposed to properly correlated signals during the early phases of training.
We show that critical periods arise from the complex and unstable early transient dynamics, which are decisive of final performance of the trained system and their learned representations.
arXiv Detail & Related papers (2022-10-06T23:50:38Z) - Continual Learning with Bayesian Model based on a Fixed Pre-trained
Feature Extractor [55.9023096444383]
Current deep learning models are characterised by catastrophic forgetting of old knowledge when learning new classes.
Inspired by the process of learning new knowledge in human brains, we propose a Bayesian generative model for continual learning.
arXiv Detail & Related papers (2022-04-28T08:41:51Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
Replay in neural networks involves training on sequential data with memorized samples, which counteracts forgetting of previous behavior caused by non-stationarity.
We present a method where these auxiliary samples are generated on the fly, given only the model that is being trained for the assessed objective.
Instead the implicit memory of learned samples within the assessed model itself is exploited.
arXiv Detail & Related papers (2020-06-22T15:07:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.