MetaQAP -- A Meta-Learning Approach for Quality-Aware Pretraining in Image Quality Assessment
- URL: http://arxiv.org/abs/2506.16601v1
- Date: Thu, 19 Jun 2025 21:03:47 GMT
- Title: MetaQAP -- A Meta-Learning Approach for Quality-Aware Pretraining in Image Quality Assessment
- Authors: Muhammad Azeem Aslam, Muhammad Hamza, Nisar Ahmed, Gulshan Saleem, Zhu Shuangtong, Hu Hongfei, Xu Wei, Saba Aslam, Wang Jun,
- Abstract summary: Image Quality Assessment (IQA) is a critical task in a wide range of applications but remains challenging due to the subjective nature of human perception and the complexity of real-world image distortions.<n>This study proposes MetaQAP, a novel no-reference IQA model designed to address these challenges by leveraging quality-aware pre-training and meta-learning.<n>The proposed MetaQAP model achieved exceptional performance with Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) scores of 0.9885/0.9812 on LiveCD, 0.9702/0.9658 on Kon
- Score: 2.578159662141357
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image Quality Assessment (IQA) is a critical task in a wide range of applications but remains challenging due to the subjective nature of human perception and the complexity of real-world image distortions. This study proposes MetaQAP, a novel no-reference IQA model designed to address these challenges by leveraging quality-aware pre-training and meta-learning. The model performs three key contributions: pre-training Convolutional Neural Networks (CNNs) on a quality-aware dataset, implementing a quality-aware loss function to optimize predictions, and integrating a meta-learner to form an ensemble model that effectively combines predictions from multiple base models. Experimental evaluations were conducted on three benchmark datasets: LiveCD, KonIQ-10K, and BIQ2021. The proposed MetaQAP model achieved exceptional performance with Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) scores of 0.9885/0.9812 on LiveCD, 0.9702/0.9658 on KonIQ-10K, and 0.884/0.8765 on BIQ2021, outperforming existing IQA methods. Cross-dataset evaluations further demonstrated the generalizability of the model, with PLCC and SROCC scores ranging from 0.6721 to 0.8023 and 0.6515 to 0.7805, respectively, across diverse datasets. The ablation study confirmed the significance of each model component, revealing substantial performance degradation when critical elements such as the meta-learner or quality-aware loss function were omitted. MetaQAP not only addresses the complexities of authentic distortions but also establishes a robust and generalizable framework for practical IQA applications. By advancing the state-of-the-art in no-reference IQA, this research provides valuable insights and methodologies for future improvements and extensions in the field.
Related papers
- Beyond Scaling: Measuring and Predicting the Upper Bound of Knowledge Retention in Language Model Pre-Training [51.41246396610475]
This paper aims to predict performance in closed-book question answering (QA) without the help of external tools.<n>We conduct large-scale retrieval and semantic analysis across the pre-training corpora of 21 publicly available and 3 custom-trained large language models.<n>Building on these foundations, we propose Size-dependent Mutual Information (SMI), an information-theoretic metric that linearly correlates pre-training data characteristics.
arXiv Detail & Related papers (2025-02-06T13:23:53Z) - Boosting CLIP Adaptation for Image Quality Assessment via Meta-Prompt Learning and Gradient Regularization [55.09893295671917]
This paper introduces a novel Gradient-Regulated Meta-Prompt IQA Framework (GRMP-IQA)
The GRMP-IQA comprises two key modules: Meta-Prompt Pre-training Module and Quality-Aware Gradient Regularization.
Experiments on five standard BIQA datasets demonstrate the superior performance to the state-of-the-art BIQA methods under limited data setting.
arXiv Detail & Related papers (2024-09-09T07:26:21Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - Feature Denoising Diffusion Model for Blind Image Quality Assessment [58.5808754919597]
Blind Image Quality Assessment (BIQA) aims to evaluate image quality in line with human perception, without reference benchmarks.
Deep learning BIQA methods typically depend on using features from high-level tasks for transfer learning.
In this paper, we take an initial step towards exploring the diffusion model for feature denoising in BIQA.
arXiv Detail & Related papers (2024-01-22T13:38:24Z) - Data-Efficient Image Quality Assessment with Attention-Panel Decoder [19.987556370430806]
Blind Image Quality Assessment (BIQA) is a fundamental task in computer vision, which remains unresolved due to the complex distortion conditions and diversified image contents.
We propose a novel BIQA pipeline based on the Transformer architecture, which achieves an efficient quality-aware feature representation with much fewer data.
arXiv Detail & Related papers (2023-04-11T03:52:17Z) - Image Quality Assessment: Integrating Model-Centric and Data-Centric
Approaches [20.931709027443706]
Learning-based image quality assessment (IQA) has made remarkable progress in the past decade.
Nearly all consider the two key components -- model and data -- in isolation.
arXiv Detail & Related papers (2022-07-29T16:23:57Z) - Learning brain MRI quality control: a multi-factorial generalization
problem [0.0]
This work aimed at evaluating the performances of the MRIQC pipeline on various large-scale datasets.
We focused our analysis on the MRIQC preprocessing steps and tested the pipeline with and without them.
We concluded that a model trained with data from a heterogeneous population, such as the CATI dataset, provides the best scores on unseen data.
arXiv Detail & Related papers (2022-05-31T15:46:44Z) - Classification-based Quality Estimation: Small and Efficient Models for
Real-world Applications [29.380675447523817]
Sentence-level Quality estimation (QE) of machine translation is traditionally formulated as a regression task.
Recent QE models have achieved previously-unseen levels of correlation with human judgments.
We evaluate several model compression techniques for QE and find that, despite their popularity in other NLP tasks, they lead to poor performance in this regression setting.
arXiv Detail & Related papers (2021-09-17T16:14:52Z) - Task-Specific Normalization for Continual Learning of Blind Image
Quality Models [105.03239956378465]
We present a simple yet effective continual learning method for blind image quality assessment (BIQA)
The key step in our approach is to freeze all convolution filters of a pre-trained deep neural network (DNN) for an explicit promise of stability.
We assign each new IQA dataset (i.e., task) a prediction head, and load the corresponding normalization parameters to produce a quality score.
The final quality estimate is computed by black a weighted summation of predictions from all heads with a lightweight $K$-means gating mechanism.
arXiv Detail & Related papers (2021-07-28T15:21:01Z) - MetaIQA: Deep Meta-learning for No-Reference Image Quality Assessment [73.55944459902041]
This paper presents a no-reference IQA metric based on deep meta-learning.
We first collect a number of NR-IQA tasks for different distortions.
Then meta-learning is adopted to learn the prior knowledge shared by diversified distortions.
Extensive experiments demonstrate that the proposed metric outperforms the state-of-the-arts by a large margin.
arXiv Detail & Related papers (2020-04-11T23:36:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.