Semantic Outlier Removal with Embedding Models and LLMs
- URL: http://arxiv.org/abs/2506.16644v1
- Date: Thu, 19 Jun 2025 23:06:12 GMT
- Title: Semantic Outlier Removal with Embedding Models and LLMs
- Authors: Eren Akbiyik, João Almeida, Rik Melis, Ritu Sriram, Viviana Petrescu, Vilhjálmur Vilhjálmsson,
- Abstract summary: We introduce SORE (Semantic Outlier Removal), a cost-effective, transparent method to identify and excise unwanted text segments.<n>SORE achieves near-LLM extraction precision at a fraction of the cost.<n>Our system is currently deployed in production, processing millions of documents daily across multiple languages.
- Score: 0.45080838507508303
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern text processing pipelines demand robust methods to remove extraneous content while preserving a document's core message. Traditional approaches such as HTML boilerplate extraction or keyword filters often fail in multilingual settings and struggle with context-sensitive nuances, whereas Large Language Models (LLMs) offer improved quality at high computational cost. We introduce SORE (Semantic Outlier Removal), a cost-effective, transparent method that leverages multilingual sentence embeddings and approximate nearest-neighbor search to identify and excise unwanted text segments. By first identifying core content via metadata embedding and then flagging segments that either closely match predefined outlier groups or deviate significantly from the core, SORE achieves near-LLM extraction precision at a fraction of the cost. Experiments on HTML datasets demonstrate that SORE outperforms structural methods and yield high precision in diverse scenarios. Our system is currently deployed in production, processing millions of documents daily across multiple languages while maintaining both efficiency and accuracy. To facilitate reproducibility and further research, we release our implementation and evaluation datasets.
Related papers
- StructText: A Synthetic Table-to-Text Approach for Benchmark Generation with Multi-Dimensional Evaluation [8.251302684712773]
StructText is an end-to-end framework for automatically generating high-fidelity benchmarks for key-value extraction from text.<n>We evaluate the proposed method on 71,539 examples across 49 documents.
arXiv Detail & Related papers (2025-07-28T21:20:44Z) - Aligning Large Language Models to Low-Resource Languages through LLM-Based Selective Translation: A Systematic Study [1.0470286407954037]
selective translation is a technique that translates only the translatable parts of a text while preserving non-translatable content and sentence structure.<n>Our experiments focus on the low-resource Indic language Hindi and compare translations generated by Google Cloud Translation (GCP) and Llama-3.1-405B.
arXiv Detail & Related papers (2025-07-18T18:21:52Z) - LexMatcher: Dictionary-centric Data Collection for LLM-based Machine Translation [67.24113079928668]
We present LexMatcher, a method for data curation driven by the coverage of senses found in bilingual dictionaries.
Our approach outperforms the established baselines on the WMT2022 test sets.
arXiv Detail & Related papers (2024-06-03T15:30:36Z) - Adaptable and Reliable Text Classification using Large Language Models [7.962669028039958]
This paper introduces an adaptable and reliable text classification paradigm, which leverages Large Language Models (LLMs)<n>We evaluated the performance of several LLMs, machine learning algorithms, and neural network-based architectures on four diverse datasets.<n>It is shown that the system's performance can be further enhanced through few-shot or fine-tuning strategies.
arXiv Detail & Related papers (2024-05-17T04:05:05Z) - Improving Text Embeddings with Large Language Models [59.930513259982725]
We introduce a novel and simple method for obtaining high-quality text embeddings using only synthetic data and less than 1k training steps.
We leverage proprietary LLMs to generate diverse synthetic data for hundreds of thousands of text embedding tasks across 93 languages.
Experiments demonstrate that our method achieves strong performance on highly competitive text embedding benchmarks without using any labeled data.
arXiv Detail & Related papers (2023-12-31T02:13:18Z) - Are the Best Multilingual Document Embeddings simply Based on Sentence
Embeddings? [18.968571816913208]
We provide a systematic comparison of methods to produce document-level representations from sentences based on LASER, LaBSE, and Sentence BERT pre-trained multilingual models.
We show that a clever combination of sentence embeddings is usually better than encoding the full document as a single unit.
arXiv Detail & Related papers (2023-04-28T12:11:21Z) - Active Learning for Multilingual Semantic Parser [65.2180122032335]
We propose the first active learning procedure for multilingual semantic parsing (AL-MSP)
AL-MSP selects only a subset from the existing datasets to be translated.
Our experiments show that AL-MSP significantly reduces translation costs with ideal selection methods.
arXiv Detail & Related papers (2023-01-30T14:19:29Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
A problem that frequently occurs when working with a non-English language is the scarcity of annotated training data.
We design a simple but effective ensemble-based framework that combines various transfer learning techniques.
We also propose a low-cost TL method that bootstraps coreference resolution models by utilizing Wikipedia anchor texts.
arXiv Detail & Related papers (2023-01-22T18:22:55Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
We propose a generative model for learning multilingual text embeddings.
Our model operates on parallel data in $N$ languages.
We evaluate this method on a suite of tasks including semantic similarity, bitext mining, and cross-lingual question retrieval.
arXiv Detail & Related papers (2022-12-21T02:41:40Z) - Perplexed by Quality: A Perplexity-based Method for Adult and Harmful
Content Detection in Multilingual Heterogeneous Web Data [0.0]
We explore different methods for detecting adult and harmful of content in multilingual heterogeneous web data.
We train solely with adult and harmful textual data, and then select the documents having a perplexity value above a given threshold.
This approach will virtually cluster our documents into two distinct groups, which will greatly facilitate the choice of the threshold for the perplexity.
arXiv Detail & Related papers (2022-12-20T17:14:45Z) - FILTER: An Enhanced Fusion Method for Cross-lingual Language
Understanding [85.29270319872597]
We propose an enhanced fusion method that takes cross-lingual data as input for XLM finetuning.
During inference, the model makes predictions based on the text input in the target language and its translation in the source language.
To tackle this issue, we propose an additional KL-divergence self-teaching loss for model training, based on auto-generated soft pseudo-labels for translated text in the target language.
arXiv Detail & Related papers (2020-09-10T22:42:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.