Language-Informed Synthesis of Rational Agent Models for Grounded Theory-of-Mind Reasoning On-The-Fly
- URL: http://arxiv.org/abs/2506.16755v1
- Date: Fri, 20 Jun 2025 05:21:42 GMT
- Title: Language-Informed Synthesis of Rational Agent Models for Grounded Theory-of-Mind Reasoning On-The-Fly
- Authors: Lance Ying, Ryan Truong, Katherine M. Collins, Cedegao E. Zhang, Megan Wei, Tyler Brooke-Wilson, Tan Zhi-Xuan, Lionel Wong, Joshua B. Tenenbaum,
- Abstract summary: LIRAS frames multimodal social reasoning as a process of constructing structured but situation-specific agent and environment representations.<n>Our model (instantiated with a comparatively lightweight VLM) outperforms ablations and state-of-the-art models in capturing human judgments across all domains.
- Score: 38.49445976380049
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Drawing real world social inferences usually requires taking into account information from multiple modalities. Language is a particularly powerful source of information in social settings, especially in novel situations where language can provide both abstract information about the environment dynamics and concrete specifics about an agent that cannot be easily visually observed. In this paper, we propose Language-Informed Rational Agent Synthesis (LIRAS), a framework for drawing context-specific social inferences that integrate linguistic and visual inputs. LIRAS frames multimodal social reasoning as a process of constructing structured but situation-specific agent and environment representations - leveraging multimodal language models to parse language and visual inputs into unified symbolic representations, over which a Bayesian inverse planning engine can be run to produce granular probabilistic judgments. On a range of existing and new social reasoning tasks derived from cognitive science experiments, we find that our model (instantiated with a comparatively lightweight VLM) outperforms ablations and state-of-the-art models in capturing human judgments across all domains.
Related papers
- Modeling Open-World Cognition as On-Demand Synthesis of Probabilistic Models [93.1043186636177]
We explore the hypothesis that people use a combination of distributed and symbolic representations to construct bespoke mental models tailored to novel situations.<n>We propose a computational implementation of this idea -- a Model Synthesis Architecture''<n>We evaluate our MSA as a model of human judgments on a novel reasoning dataset.
arXiv Detail & Related papers (2025-07-16T18:01:03Z) - IOLBENCH: Benchmarking LLMs on Linguistic Reasoning [8.20398036986024]
We introduce IOLBENCH, a novel benchmark derived from International Linguistics Olympiad (IOL) problems.<n>This dataset encompasses diverse problems testing syntax, morphology, phonology, and semantics.<n>We find that even the most advanced models struggle to handle the intricacies of linguistic complexity.
arXiv Detail & Related papers (2025-01-08T03:15:10Z) - Neurosymbolic Graph Enrichment for Grounded World Models [47.92947508449361]
We present a novel approach to enhance and exploit LLM reactive capability to address complex problems.
We create a multimodal, knowledge-augmented formal representation of meaning that combines the strengths of large language models with structured semantic representations.
By bridging the gap between unstructured language models and formal semantic structures, our method opens new avenues for tackling intricate problems in natural language understanding and reasoning.
arXiv Detail & Related papers (2024-11-19T17:23:55Z) - ARPA: A Novel Hybrid Model for Advancing Visual Word Disambiguation Using Large Language Models and Transformers [1.6541870997607049]
We present ARPA, an architecture that fuses the unparalleled contextual understanding of large language models with the advanced feature extraction capabilities of transformers.
ARPA's introduction marks a significant milestone in visual word disambiguation, offering a compelling solution.
We invite researchers and practitioners to explore the capabilities of our model, envisioning a future where such hybrid models drive unprecedented advancements in artificial intelligence.
arXiv Detail & Related papers (2024-08-12T10:15:13Z) - LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
We introduce LangSuitE, a versatile and simulation-free testbed featuring 6 representative embodied tasks in textual embodied worlds.
Compared with previous LLM-based testbeds, LangSuitE offers adaptability to diverse environments without multiple simulation engines.
We devise a novel chain-of-thought (CoT) schema, EmMem, which summarizes embodied states w.r.t. history information.
arXiv Detail & Related papers (2024-06-24T03:36:29Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
Vision systems to see and reason about the compositional nature of visual scenes are fundamental to understanding our world.
The models learned to bridge the gap between such modalities coupled with large-scale training data facilitate contextual reasoning, generalization, and prompt capabilities at test time.
The output of such models can be modified through human-provided prompts without retraining, e.g., segmenting a particular object by providing a bounding box, having interactive dialogues by asking questions about an image or video scene or manipulating the robot's behavior through language instructions.
arXiv Detail & Related papers (2023-07-25T17:59:18Z) - From Word Models to World Models: Translating from Natural Language to
the Probabilistic Language of Thought [124.40905824051079]
We propose rational meaning construction, a computational framework for language-informed thinking.
We frame linguistic meaning as a context-sensitive mapping from natural language into a probabilistic language of thought.
We show that LLMs can generate context-sensitive translations that capture pragmatically-appropriate linguistic meanings.
We extend our framework to integrate cognitively-motivated symbolic modules.
arXiv Detail & Related papers (2023-06-22T05:14:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.