Coupled cluster method tailored by quantum selected configuration interaction
- URL: http://arxiv.org/abs/2506.16911v1
- Date: Fri, 20 Jun 2025 11:07:26 GMT
- Title: Coupled cluster method tailored by quantum selected configuration interaction
- Authors: Luca Erhart, Yuichiro Yoshida, Wataru Mizukami,
- Abstract summary: We present a hybrid quantum-classical scheme that tailors coupled-cluster (CC) theory with a quantum-selected configuration interaction (QSCI) wave function.<n>QSCI provides a scalable, shot-efficient approach to reconstructing the many-electron state prepared on quantum hardware.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present the quantum-selected configuration interaction-tailored coupled-cluster (QSCI-TCC) method, a hybrid quantum-classical scheme that tailors coupled-cluster (CC) theory with a quantum-selected configuration interaction (QSCI) wave function. QSCI provides a scalable, shot-efficient approach to reconstructing the many-electron state prepared on quantum hardware on a classical computer. The resulting active-space CI coefficients, which are free from additive shot noise, are mapped to fixed cluster amplitudes within the tailored coupled-cluster framework, after which a conventional CC calculation optimizes the remaining amplitudes. This workflow embeds static (strong) correlation from the quantum device and subsequently recovers dynamical (weak) correlation, yielding a balanced description of both. The method is classically simulated and applied to the simultaneous O-H bond dissociation in H$_2$O and the triple-bond dissociation in N$_2$. QSCI-TCC and its perturbative-triples variant, QSCI-TCC(T), provide accurate results even where CCSD or CCSD(T) begin to break down. Shot-count tests for the N$_2$ (6e, 6o) active space demonstrate that, with the (c) correction, chemically sufficient precision ($\leq 1$ kcal/mol) is achieved with only $1.0 \times 10^5$ shots in the strongly correlated regime ($r=2.2$ \r{A}) -- an order of magnitude fewer than required by an earlier matchgate-shadows implementation [J. Chem. Theory Comput., 20, 5068 (2024)]. By pairing resource-efficient quantum sampling with the CC theory, QSCI-TCC provides a promising pathway to quantum-chemical calculations of classically intractable systems.
Related papers
- Enhancing the accuracy and efficiency of sample-based quantum diagonalization with phaseless auxiliary-field quantum Monte Carlo [0.0]
We show that a non-perturbative approach, phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) can recover a substantial amount of correlation energy.<n> Extrapolation of the ph-AFQMC energy versus the energy variance of the SQD trial wavefunctions has the potential to further improve the energy accuracy.
arXiv Detail & Related papers (2025-03-07T22:38:22Z) - Extending Quantum Perceptrons: Rydberg Devices, Multi-Class Classification, and Error Tolerance [67.77677387243135]
Quantum Neuromorphic Computing (QNC) merges quantum computation with neural computation to create scalable, noise-resilient algorithms for quantum machine learning (QML)
At the core of QNC is the quantum perceptron (QP), which leverages the analog dynamics of interacting qubits to enable universal quantum computation.
arXiv Detail & Related papers (2024-11-13T23:56:20Z) - Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
We propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers.
Our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28% and 57% on average.
arXiv Detail & Related papers (2024-06-17T14:10:10Z) - Quantum State Transfer in Interacting, Multiple-Excitation Systems [41.94295877935867]
Quantum state transfer (QST) describes the coherent passage of quantum information from one node to another.
We describe Monte Carlo techniques which enable the discovery of a Hamiltonian that gives high-fidelity QST.
The resulting Jaynes-Cummings-Hubbard and periodic Anderson models can, in principle, be engineered in appropriate hardware to give efficient QST.
arXiv Detail & Related papers (2024-05-10T23:46:35Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Evaluating Ground State Energies of Chemical Systems with Low-Depth
Quantum Circuits and High Accuracy [6.81054341190257]
We develop an enhanced Variational Quantum Eigensolver (VQE) ansatz based on the Qubit Coupled Cluster (QCC) approach.
We evaluate our enhanced QCC ansatz on two distinct quantum hardware, IBM Kolkata and Quantinuum H1-1.
arXiv Detail & Related papers (2024-02-21T17:45:03Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Towards the simulation of transition-metal oxides of the cathode battery
materials using VQE methods [0.0]
Variational quantum eigensolver (VQE) is a hybrid quantum-classical technique that leverages noisy intermediate scale quantum hardware to obtain minimum eigenvalue of a model Hamiltonian.
In this work, we employ VQE methods to obtain the ground-state energy of LiCoO$$, a candidate transition metal oxide used for battery cathodes.
arXiv Detail & Related papers (2022-08-16T22:30:54Z) - Localized Quantum Chemistry on Quantum Computers [0.6649973446180738]
Quantum chemistry calculations are typically limited by the computation cost that scales exponentially with the size of the system.
We present a quantum algorithm that combines a localization of multireference wave functions of chemical systems with quantum phase estimation.
arXiv Detail & Related papers (2022-03-03T20:52:22Z) - Reducing Unitary Coupled Cluster Circuit Depth by Classical Stochastic
Amplitude Pre-Screening [0.0]
Unitary Coupled Cluster (UCC) approaches are an appealing route to utilising quantum hardware to perform quantum chemistry calculations.
We present a combined classical-quantum approach where a classical UCC pre-processing step is used to determine the important excitations in the UCC ansatz.
arXiv Detail & Related papers (2021-08-24T18:34:14Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.