Variational Learning of Disentangled Representations
- URL: http://arxiv.org/abs/2506.17182v1
- Date: Fri, 20 Jun 2025 17:36:12 GMT
- Title: Variational Learning of Disentangled Representations
- Authors: Yuli Slavutsky, Ozgur Beker, David Blei, Bianca Dumitrascu,
- Abstract summary: Disentangled representations enable models to separate factors of variation that are shared across experimental conditions from those that are condition-specific.<n>We introduce DISCoVeR, a new variational framework that explicitly separates condition-invariant and condition-specific factors.<n>We show that DISCoVeR achieves improved disentanglement on synthetic datasets, natural images, and single-cell RNA-seq data.
- Score: 2.3713407563738063
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Disentangled representations enable models to separate factors of variation that are shared across experimental conditions from those that are condition-specific. This separation is essential in domains such as biomedical data analysis, where generalization to new treatments, patients, or species depends on isolating stable biological signals from context-dependent effects. While extensions of the variational autoencoder (VAE) framework have been proposed to address this problem, they frequently suffer from leakage between latent representations, limiting their ability to generalize to unseen conditions. Here, we introduce DISCoVeR, a new variational framework that explicitly separates condition-invariant and condition-specific factors. DISCoVeR integrates three key components: (i) a dual-latent architecture that models shared and specific factors separately; (ii) two parallel reconstructions that ensure both representations remain informative; and (iii) a novel max-min objective that encourages clean separation without relying on handcrafted priors, while making only minimal assumptions. Theoretically, we show that this objective maximizes data likelihood while promoting disentanglement, and that it admits a unique equilibrium. Empirically, we demonstrate that DISCoVeR achieves improved disentanglement on synthetic datasets, natural images, and single-cell RNA-seq data. Together, these results establish DISCoVeR as a principled approach for learning disentangled representations in multi-condition settings.
Related papers
- Unlasting: Unpaired Single-Cell Multi-Perturbation Estimation by Dual Conditional Diffusion Implicit Bridges [68.98973318553983]
We propose a framework based on Dual Diffusion Implicit Bridges (DDIB) to learn the mapping between different data distributions.<n>We integrate gene regulatory network (GRN) information to propagate perturbation signals in a biologically meaningful way.<n>We also incorporate a masking mechanism to predict silent genes, improving the quality of generated profiles.
arXiv Detail & Related papers (2025-06-26T09:05:38Z) - Spectral decomposition-assisted multi-study factor analysis [7.925272817108244]
Methods are applied to integrate three studies on gene associations among immune cells.<n> Conditional distribution of factor loadings has a simple product form across outcomes.
arXiv Detail & Related papers (2025-02-20T14:33:40Z) - Sequential Representation Learning via Static-Dynamic Conditional Disentanglement [58.19137637859017]
This paper explores self-supervised disentangled representation learning within sequential data, focusing on separating time-independent and time-varying factors in videos.
We propose a new model that breaks the usual independence assumption between those factors by explicitly accounting for the causal relationship between the static/dynamic variables.
Experiments show that the proposed approach outperforms previous complex state-of-the-art techniques in scenarios where the dynamics of a scene are influenced by its content.
arXiv Detail & Related papers (2024-08-10T17:04:39Z) - Combining propensity score methods with variational autoencoders for
generating synthetic data in presence of latent sub-groups [0.0]
Heterogeneity might be known, e.g., as indicated by sub-groups labels, or might be unknown and reflected only in properties of distributions, such as bimodality or skewness.
We investigate how such heterogeneity can be preserved and controlled when obtaining synthetic data from variational autoencoders (VAEs), i.e., a generative deep learning technique.
arXiv Detail & Related papers (2023-12-12T22:49:24Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - On the Interventional Kullback-Leibler Divergence [11.57430292133273]
We introduce the Interventional Kullback-Leibler divergence to quantify both structural and distributional differences between causal models.
We propose a sufficient condition on the intervention targets to identify subsets of observed variables on which the models provably agree or disagree.
arXiv Detail & Related papers (2023-02-10T17:03:29Z) - Score-based Causal Representation Learning with Interventions [54.735484409244386]
This paper studies the causal representation learning problem when latent causal variables are observed indirectly.
The objectives are: (i) recovering the unknown linear transformation (up to scaling) and (ii) determining the directed acyclic graph (DAG) underlying the latent variables.
arXiv Detail & Related papers (2023-01-19T18:39:48Z) - Learning Invariant Representations under General Interventions on the
Response [2.725698729450241]
We focus on linear structural causal models (SCMs) and introduce invariant matching property (IMP)
We analyze the generalization errors of our method under both the discrete and continuous environment settings.
arXiv Detail & Related papers (2022-08-22T03:09:17Z) - Heterogeneous Target Speech Separation [52.05046029743995]
We introduce a new paradigm for single-channel target source separation where the sources of interest can be distinguished using non-mutually exclusive concepts.
Our proposed heterogeneous separation framework can seamlessly leverage datasets with large distribution shifts.
arXiv Detail & Related papers (2022-04-07T17:14:20Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
We introduce a causal formalism of motion forecasting, which casts the problem as a dynamic process with three groups of latent variables.
We devise a modular architecture that factorizes the representations of invariant mechanisms and style confounders to approximate a causal graph.
Experiment results on synthetic and real datasets show that our three proposed components significantly improve the robustness and reusability of the learned motion representations.
arXiv Detail & Related papers (2021-11-29T18:59:09Z) - NestedVAE: Isolating Common Factors via Weak Supervision [45.366986365879505]
We identify the connection between the task of bias reduction and that of isolating factors common between domains.
To isolate the common factors we combine the theory of deep latent variable models with information bottleneck theory.
Two outer VAEs with shared weights attempt to reconstruct the input and infer a latent space, whilst a nested VAE attempts to reconstruct the latent representation of one image, from the latent representation of its paired image.
arXiv Detail & Related papers (2020-02-26T15:49:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.