SlimRAG: Retrieval without Graphs via Entity-Aware Context Selection
- URL: http://arxiv.org/abs/2506.17288v1
- Date: Sun, 15 Jun 2025 15:36:17 GMT
- Title: SlimRAG: Retrieval without Graphs via Entity-Aware Context Selection
- Authors: Jiale Zhang, Jiaxiang Chen, Zhucong Li, Jie Ding, Kui Zhao, Zenglin Xu, Xin Pang, Yinghui Xu,
- Abstract summary: SlimRAG is a lightweight framework for retrieval without graphs.<n>It replaces structure-heavy components with a simple yet effective entity-aware mechanism.<n> Experiments show that SlimRAG outperforms strong flat and graph-based baselines in accuracy.
- Score: 38.200971604630524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-Augmented Generation (RAG) enhances language models by incorporating external knowledge at inference time. However, graph-based RAG systems often suffer from structural overhead and imprecise retrieval: they require costly pipelines for entity linking and relation extraction, yet frequently return subgraphs filled with loosely related or tangential content. This stems from a fundamental flaw -- semantic similarity does not imply semantic relevance. We introduce SlimRAG, a lightweight framework for retrieval without graphs. SlimRAG replaces structure-heavy components with a simple yet effective entity-aware mechanism. At indexing time, it constructs a compact entity-to-chunk table based on semantic embeddings. At query time, it identifies salient entities, retrieves and scores associated chunks, and assembles a concise, contextually relevant input -- without graph traversal or edge construction. To quantify retrieval efficiency, we propose Relative Index Token Utilization (RITU), a metric measuring the compactness of retrieved content. Experiments across multiple QA benchmarks show that SlimRAG outperforms strong flat and graph-based baselines in accuracy while reducing index size and RITU (e.g., 16.31 vs. 56+), highlighting the value of structure-free, entity-centric context selection. The code will be released soon. https://github.com/continue-ai-company/SlimRAG
Related papers
- Respecting Temporal-Causal Consistency: Entity-Event Knowledge Graphs for Retrieval-Augmented Generation [69.45495166424642]
We develop a robust and discriminative QA benchmark to measure temporal, causal, and character consistency understanding in narrative documents.<n>We then introduce Entity-Event RAG (E2RAG), a dual-graph framework that keeps separate entity and event subgraphs linked by a bipartite mapping.<n>Across ChronoQA, our approach outperforms state-of-the-art unstructured and KG-based RAG baselines, with notable gains on causal and character consistency queries.
arXiv Detail & Related papers (2025-06-06T10:07:21Z) - Divide by Question, Conquer by Agent: SPLIT-RAG with Question-Driven Graph Partitioning [18.96570718233786]
SPLIT-RAG is a multi-agent RAG framework that addresses the limitations with question-driven semantic graph partitioning and collaborative subgraph retrieval.<n>The innovative framework first create Semantic Partitioning of Linked Information, then use the Type-Specialized knowledge base to achieve Multi-Agent RAG.<n>The attribute-aware graph segmentation manages to divide knowledge graphs into semantically coherent subgraphs, ensuring subgraphs align with different query types.<n>A hierarchical merging module resolves inconsistencies across subgraph-derived answers through logical verifications.
arXiv Detail & Related papers (2025-05-20T06:44:34Z) - ELITE: Embedding-Less retrieval with Iterative Text Exploration [5.8851517822935335]
Large Language Models (LLMs) have achieved impressive progress in natural language processing.<n>Their limited ability to retain long-term context constrains performance on document-level or multi-turn tasks.
arXiv Detail & Related papers (2025-05-17T08:48:43Z) - PathRAG: Pruning Graph-based Retrieval Augmented Generation with Relational Paths [42.01377074786958]
Retrieval-augmented generation (RAG) improves the response quality of large language models (LLMs) by retrieving knowledge from external databases.<n>We propose PathRAG, which retrieves key relational paths from the indexing graph, and converts these paths into textual form for prompting LLMs.<n>PathRAG consistently outperforms state-of-the-art baselines across six datasets and five evaluation dimensions.
arXiv Detail & Related papers (2025-02-18T11:18:55Z) - SiReRAG: Indexing Similar and Related Information for Multihop Reasoning [96.60045548116584]
SiReRAG is a novel RAG indexing approach that explicitly considers both similar and related information.<n>SiReRAG consistently outperforms state-of-the-art indexing methods on three multihop datasets.
arXiv Detail & Related papers (2024-12-09T04:56:43Z) - Less is More: Making Smaller Language Models Competent Subgraph Retrievers for Multi-hop KGQA [51.3033125256716]
We model the subgraph retrieval task as a conditional generation task handled by small language models.
Our base generative subgraph retrieval model, consisting of only 220M parameters, competitive retrieval performance compared to state-of-the-art models.
Our largest 3B model, when plugged with an LLM reader, sets new SOTA end-to-end performance on both the WebQSP and CWQ benchmarks.
arXiv Detail & Related papers (2024-10-08T15:22:36Z) - Modeling Fine-grained Information via Knowledge-aware Hierarchical Graph
for Zero-shot Entity Retrieval [11.533614615010643]
We propose GER to capture more fine-grained information as complementary to sentence embeddings.
We learn the fine-grained information about mention/entity by aggregating information from these knowledge units.
Experimental results on popular benchmarks demonstrate that our proposed GER framework performs better than previous state-of-the-art models.
arXiv Detail & Related papers (2022-11-20T14:37:53Z) - HiSMatch: Historical Structure Matching based Temporal Knowledge Graph
Reasoning [59.38797474903334]
This paper proposes the textbfHistorical textbfStructure textbfMatching (textbfHiSMatch) model.
It applies two structure encoders to capture the semantic information contained in the historical structures of the query and candidate entities.
Experiments on six benchmark datasets demonstrate the significant improvement of the proposed HiSMatch model, with up to 5.6% performance improvement in MRR, compared to the state-of-the-art baselines.
arXiv Detail & Related papers (2022-10-18T09:39:26Z) - Autoregressive Entity Retrieval [55.38027440347138]
Entities are at the center of how we represent and aggregate knowledge.
The ability to retrieve such entities given a query is fundamental for knowledge-intensive tasks such as entity linking and open-domain question answering.
We propose GENRE, the first system that retrieves entities by generating their unique names, left to right, token-by-token in an autoregressive fashion.
arXiv Detail & Related papers (2020-10-02T10:13:31Z) - Iterative Context-Aware Graph Inference for Visual Dialog [126.016187323249]
We propose a novel Context-Aware Graph (CAG) neural network.
Each node in the graph corresponds to a joint semantic feature, including both object-based (visual) and history-related (textual) context representations.
arXiv Detail & Related papers (2020-04-05T13:09:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.