Gaussian Processes and Reproducing Kernels: Connections and Equivalences
- URL: http://arxiv.org/abs/2506.17366v1
- Date: Fri, 20 Jun 2025 12:08:18 GMT
- Title: Gaussian Processes and Reproducing Kernels: Connections and Equivalences
- Authors: Motonobu Kanagawa, Philipp Hennig, Dino Sejdinovic, Bharath K. Sriperumbudur,
- Abstract summary: monograph studies the relations between two approaches using positive definite kernels: probabilistic methods using Gaussian processes, and non-probabilistic methods using reproducing kernel Hilbert spaces (RKHS)<n>They are widely studied and used in machine learning, statistics, and numerical analysis.
- Score: 38.51130427120958
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This monograph studies the relations between two approaches using positive definite kernels: probabilistic methods using Gaussian processes, and non-probabilistic methods using reproducing kernel Hilbert spaces (RKHS). They are widely studied and used in machine learning, statistics, and numerical analysis. Connections and equivalences between them are reviewed for fundamental topics such as regression, interpolation, numerical integration, distributional discrepancies, and statistical dependence, as well as for sample path properties of Gaussian processes. A unifying perspective for these equivalences is established, based on the equivalence between the Gaussian Hilbert space and the RKHS. The monograph serves as a basis to bridge many other methods based on Gaussian processes and reproducing kernels, which are developed in parallel by the two research communities.
Related papers
- Bayesian Circular Regression with von Mises Quasi-Processes [57.88921637944379]
In this work we explore a family of expressive and interpretable distributions over circle-valued random functions.<n>For posterior inference, we introduce a new Stratonovich-like augmentation that lends itself to fast Gibbs sampling.<n>We present experiments applying this model to the prediction of wind directions and the percentage of the running gait cycle as a function of joint angles.
arXiv Detail & Related papers (2024-06-19T01:57:21Z) - Approximation properties relative to continuous scale space for hybrid discretizations of Gaussian derivative operators [0.5439020425819]
This paper presents an analysis of properties of two hybrid discretization methods for Gaussian derivatives.<n>The motivation for studying these discretization methods is that in situations when multiple spatial derivatives of different order are needed at the same scale level, they can be computed significantly more efficiently.
arXiv Detail & Related papers (2024-05-08T14:44:34Z) - Posterior Contraction Rates for Mat\'ern Gaussian Processes on
Riemannian Manifolds [51.68005047958965]
We show that intrinsic Gaussian processes can achieve better performance in practice.
Our work shows that finer-grained analyses are needed to distinguish between different levels of data-efficiency.
arXiv Detail & Related papers (2023-09-19T20:30:58Z) - Non-separable Covariance Kernels for Spatiotemporal Gaussian Processes
based on a Hybrid Spectral Method and the Harmonic Oscillator [0.0]
We present a hybrid spectral approach for generating covariance kernels based on physical arguments.
We derive explicit relations for the covariance kernels in the three oscillator regimes (underdamping, critical damping, overdamping) and investigate their properties.
arXiv Detail & Related papers (2023-02-19T14:12:48Z) - Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces II: non-compact symmetric spaces [43.877478563933316]
In to symmetries is one of the most fundamental forms of prior information one can consider.
In this work, we develop constructive and practical techniques for building stationary Gaussian processes on a very large class of non-Euclidean spaces.
arXiv Detail & Related papers (2023-01-30T17:27:12Z) - Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces I: the compact case [43.877478563933316]
In to symmetries is one of the most fundamental forms of prior information one can consider.
In this work, we develop constructive and practical techniques for building stationary Gaussian processes on a very large class of non-Euclidean spaces.
arXiv Detail & Related papers (2022-08-31T16:40:40Z) - Gaussian Processes and Statistical Decision-making in Non-Euclidean
Spaces [96.53463532832939]
We develop techniques for broadening the applicability of Gaussian processes.
We introduce a wide class of efficient approximations built from this viewpoint.
We develop a collection of Gaussian process models over non-Euclidean spaces.
arXiv Detail & Related papers (2022-02-22T01:42:57Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - Advanced Stationary and Non-Stationary Kernel Designs for Domain-Aware
Gaussian Processes [0.0]
We propose advanced kernel designs that only allow for functions with certain desirable characteristics to be elements of the reproducing kernel Hilbert space (RKHS)
We will show the impact of advanced kernel designs on Gaussian processes using several synthetic and two scientific data sets.
arXiv Detail & Related papers (2021-02-05T22:07:56Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
Conventional approaches for simulating Gaussian process posteriors view samples as draws from marginal distributions of process values at finite sets of input locations.
This distribution-centric characterization leads to generative strategies that scale cubically in the size of the desired random vector.
We show how this pathwise interpretation of conditioning gives rise to a general family of approximations that lend themselves to efficiently sampling Gaussian process posteriors.
arXiv Detail & Related papers (2020-11-08T17:09:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.