Distilling On-device Language Models for Robot Planning with Minimal Human Intervention
- URL: http://arxiv.org/abs/2506.17486v1
- Date: Fri, 20 Jun 2025 21:44:27 GMT
- Title: Distilling On-device Language Models for Robot Planning with Minimal Human Intervention
- Authors: Zachary Ravichandran, Ignacio Hounie, Fernando Cladera, Alejandro Ribeiro, George J. Pappas, Vijay Kumar,
- Abstract summary: PRISM is a framework for distilling small language model (SLM)-enabled robot planners.<n>We apply PRISM to three LLM-enabled planners for mapping and exploration, manipulation, and household assistance.<n>We demonstrate that PRISM improves the performance of Llama-3.2-3B from 10-20% of GPT-4o's performance to over 93%.
- Score: 117.90128579811014
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) provide robots with powerful contextual reasoning abilities and a natural human interface. Yet, current LLM-enabled robots typically depend on cloud-hosted models, limiting their usability in environments with unreliable communication infrastructure, such as outdoor or industrial settings. We present PRISM, a framework for distilling small language model (SLM)-enabled robot planners that run on-device with minimal human supervision. Starting from an existing LLM-enabled planner, PRISM automatically synthesizes diverse tasks and environments, elicits plans from the LLM, and uses this synthetic dataset to distill a compact SLM as a drop-in replacement of the source model. We apply PRISM to three LLM-enabled planners for mapping and exploration, manipulation, and household assistance, and we demonstrate that PRISM improves the performance of Llama-3.2-3B from 10-20% of GPT-4o's performance to over 93% - using only synthetic data. We further demonstrate that the distilled planners generalize across heterogeneous robotic platforms (ground and aerial) and diverse environments (indoor and outdoor). We release all software, trained models, and datasets at https://zacravichandran.github.io/PRISM.
Related papers
- Deploying Foundation Model-Enabled Air and Ground Robots in the Field: Challenges and Opportunities [65.98704516122228]
The integration of foundation models (FMs) into robotics has enabled robots to understand natural language and reason about the semantics in their environments.<n>This paper addresses the deployment of FM-enabled robots in the field, where missions often require a robot to operate in large-scale and unstructured environments.<n>We present the first demonstration of large-scale LLM-enabled robot planning in unstructured environments with several kilometers of missions.
arXiv Detail & Related papers (2025-05-14T15:28:43Z) - Robot Utility Models: General Policies for Zero-Shot Deployment in New Environments [26.66666135624716]
We present Robot Utility Models (RUMs), a framework for training and deploying zero-shot robot policies.
RUMs can generalize to new environments without any finetuning.
We train five utility models for opening cabinet doors, opening drawers, picking up napkins, picking up paper bags, and reorienting fallen objects.
arXiv Detail & Related papers (2024-09-09T17:59:50Z) - LLaRA: Supercharging Robot Learning Data for Vision-Language Policy [56.505551117094534]
We introduce LLaRA: Large Language and Robotics Assistant, a framework that formulates robot action policy as visuo-textual conversations.<n>First, we present an automated pipeline to generate conversation-style instruction tuning data for robots from existing behavior cloning datasets.<n>We show that a VLM finetuned with a limited amount of such datasets can produce meaningful action decisions for robotic control.
arXiv Detail & Related papers (2024-06-28T17:59:12Z) - Enhancing the LLM-Based Robot Manipulation Through Human-Robot Collaboration [4.2460673279562755]
Large Language Models (LLMs) are gaining popularity in the field of robotics.
This paper proposes a novel approach to enhance the performance of LLM-based autonomous manipulation through Human-Robot Collaboration (HRC)
The approach involves using a prompted GPT-4 language model to decompose high-level language commands into sequences of motions that can be executed by the robot.
arXiv Detail & Related papers (2024-06-20T08:23:49Z) - AutoRT: Embodied Foundation Models for Large Scale Orchestration of Robotic Agents [109.3804962220498]
AutoRT is a system to scale up the deployment of operational robots in completely unseen scenarios with minimal human supervision.
We demonstrate AutoRT proposing instructions to over 20 robots across multiple buildings and collecting 77k real robot episodes via both teleoperation and autonomous robot policies.
We experimentally show that such "in-the-wild" data collected by AutoRT is significantly more diverse, and that AutoRT's use of LLMs allows for instruction following data collection robots that can align to human preferences.
arXiv Detail & Related papers (2024-01-23T18:45:54Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks.
We present an interactive planning technique for partially observable tasks using LLMs.
arXiv Detail & Related papers (2023-12-11T22:54:44Z) - Vision-Language Foundation Models as Effective Robot Imitators [48.73027330407576]
We derive a vision-language manipulation framework, dubbed RoboFlamingo, built upon the open-source VLMs, OpenFlamingo.
By exceeding the state-of-the-art performance with a large margin on the tested benchmark, we show RoboFlamingo can be an effective and competitive alternative to adapt VLMs to robot control.
arXiv Detail & Related papers (2023-11-02T16:34:33Z) - Language to Rewards for Robotic Skill Synthesis [37.21434094015743]
We introduce a new paradigm that harnesses large language models (LLMs) to define reward parameters that can be optimized and accomplish variety of robotic tasks.
Using reward as the intermediate interface generated by LLMs, we can effectively bridge the gap between high-level language instructions or corrections to low-level robot actions.
arXiv Detail & Related papers (2023-06-14T17:27:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.