Mind the Gap: Assessing Wiktionary's Crowd-Sourced Linguistic Knowledge on Morphological Gaps in Two Related Languages
- URL: http://arxiv.org/abs/2506.17603v1
- Date: Sat, 21 Jun 2025 05:46:30 GMT
- Title: Mind the Gap: Assessing Wiktionary's Crowd-Sourced Linguistic Knowledge on Morphological Gaps in Two Related Languages
- Authors: Jonathan Sakunkoo, Annabella Sakunkoo,
- Abstract summary: This study customizes a novel neural morphological analyzer to annotate Latin and Italian corpora.<n>Crowd-sourced lists of defective verbs compiled from Wiktionary are validated computationally.<n>Our results indicate that while Wiktionary provides a highly reliable account of Italian morphological gaps, 7% of Latin lemmata listed as defective show strong corpus evidence of being non-defective.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Morphological defectivity is an intriguing and understudied phenomenon in linguistics. Addressing defectivity, where expected inflectional forms are absent, is essential for improving the accuracy of NLP tools in morphologically rich languages. However, traditional linguistic resources often lack coverage of morphological gaps as such knowledge requires significant human expertise and effort to document and verify. For scarce linguistic phenomena in under-explored languages, Wikipedia and Wiktionary often serve as among the few accessible resources. Despite their extensive reach, their reliability has been a subject of controversy. This study customizes a novel neural morphological analyzer to annotate Latin and Italian corpora. Using the massive annotated data, crowd-sourced lists of defective verbs compiled from Wiktionary are validated computationally. Our results indicate that while Wiktionary provides a highly reliable account of Italian morphological gaps, 7% of Latin lemmata listed as defective show strong corpus evidence of being non-defective. This discrepancy highlights potential limitations of crowd-sourced wikis as definitive sources of linguistic knowledge, particularly for less-studied phenomena and languages, despite their value as resources for rare linguistic features. By providing scalable tools and methods for quality assurance of crowd-sourced data, this work advances computational morphology and expands linguistic knowledge of defectivity in non-English, morphologically rich languages.
Related papers
- Quantifying the Dialect Gap and its Correlates Across Languages [69.18461982439031]
This work will lay the foundation for furthering the field of dialectal NLP by laying out evident disparities and identifying possible pathways for addressing them through mindful data collection.
arXiv Detail & Related papers (2023-10-23T17:42:01Z) - Language Embeddings Sometimes Contain Typological Generalizations [0.0]
We train neural models for a range of natural language processing tasks on a massively multilingual dataset of Bible translations in 1295 languages.
The learned language representations are then compared to existing typological databases as well as to a novel set of quantitative syntactic and morphological features.
We conclude that some generalizations are surprisingly close to traditional features from linguistic typology, but that most models, as well as those of previous work, do not appear to have made linguistically meaningful generalizations.
arXiv Detail & Related papers (2023-01-19T15:09:59Z) - Transparency Helps Reveal When Language Models Learn Meaning [71.96920839263457]
Our systematic experiments with synthetic data reveal that, with languages where all expressions have context-independent denotations, both autoregressive and masked language models learn to emulate semantic relations between expressions.
Turning to natural language, our experiments with a specific phenomenon -- referential opacity -- add to the growing body of evidence that current language models do not well-represent natural language semantics.
arXiv Detail & Related papers (2022-10-14T02:35:19Z) - Morphology Without Borders: Clause-Level Morphological Annotation [8.559428282730021]
We propose to view morphology as a clause-level phenomenon, rather than word-level.
We deliver a novel dataset for clause-level morphology covering 4 typologically-different languages: English, German, Turkish and Hebrew.
Our experiments show that the clause-level tasks are substantially harder than the respective word-level tasks, while having comparable complexity across languages.
arXiv Detail & Related papers (2022-02-25T17:20:28Z) - A Latent-Variable Model for Intrinsic Probing [93.62808331764072]
We propose a novel latent-variable formulation for constructing intrinsic probes.
We find empirical evidence that pre-trained representations develop a cross-lingually entangled notion of morphosyntax.
arXiv Detail & Related papers (2022-01-20T15:01:12Z) - Morphological Disambiguation from Stemming Data [1.2183405753834562]
Kinyarwanda, a morphologically rich language, currently lacks tools for automated morphological analysis.
We learn to morphologically disambiguate Kinyarwanda verbal forms from a new stemming dataset collected through crowd-sourcing.
Our experiments reveal that inflectional properties of stems and morpheme association rules are the most discriminative features for disambiguation.
arXiv Detail & Related papers (2020-11-11T01:44:09Z) - Mechanisms for Handling Nested Dependencies in Neural-Network Language
Models and Humans [75.15855405318855]
We studied whether a modern artificial neural network trained with "deep learning" methods mimics a central aspect of human sentence processing.
Although the network was solely trained to predict the next word in a large corpus, analysis showed the emergence of specialized units that successfully handled local and long-distance syntactic agreement.
We tested the model's predictions in a behavioral experiment where humans detected violations in number agreement in sentences with systematic variations in the singular/plural status of multiple nouns.
arXiv Detail & Related papers (2020-06-19T12:00:05Z) - Linguistic Typology Features from Text: Inferring the Sparse Features of
World Atlas of Language Structures [73.06435180872293]
We construct a recurrent neural network predictor based on byte embeddings and convolutional layers.
We show that some features from various linguistic types can be predicted reliably.
arXiv Detail & Related papers (2020-04-30T21:00:53Z) - Cross-lingual, Character-Level Neural Morphological Tagging [57.0020906265213]
We train character-level recurrent neural taggers to predict morphological taggings for high-resource languages and low-resource languages together.<n>Learning joint character representations among multiple related languages successfully enables knowledge transfer from the high-resource languages to the low-resource ones, improving accuracy by up to 30% over a monolingual model.
arXiv Detail & Related papers (2017-08-30T08:14:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.