Can Generated Images Serve as a Viable Modality for Text-Centric Multimodal Learning?
- URL: http://arxiv.org/abs/2506.17623v1
- Date: Sat, 21 Jun 2025 07:32:09 GMT
- Title: Can Generated Images Serve as a Viable Modality for Text-Centric Multimodal Learning?
- Authors: Yuesheng Huang, Peng Zhang, Riliang Liu, Jiaqi Liang,
- Abstract summary: This work systematically investigates whether images generated on-the-fly by Text-to-Image (T2I) models can serve as a valuable complementary modality for text-centric tasks.
- Score: 3.966028515034415
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A significant ``modality gap" exists between the abundance of text-only data and the increasing power of multimodal models. This work systematically investigates whether images generated on-the-fly by Text-to-Image (T2I) models can serve as a valuable complementary modality for text-centric tasks. Through a comprehensive evaluation framework on text classification, we analyze the impact of critical variables, including T2I model quality, prompt engineering strategies, and multimodal fusion architectures. Our findings demonstrate that this``synthetic perception" can yield significant performance gains, even when augmenting strong large language model baselines. However, we find the effectiveness of this approach is highly conditional, depending critically on the semantic alignment between text and the generated image, the inherent ``visual groundability" of the task, and the generative fidelity of the T2I model. Our work establishes the first rigorous benchmark for this paradigm, providing a clear analysis of its potential and current limitations, and demonstrating its viability as a pathway to enrich language understanding in traditionally unimodal scenarios.
Related papers
- Weaving Context Across Images: Improving Vision-Language Models through Focus-Centric Visual Chains [31.828341309787042]
Vision-language models (VLMs) achieve remarkable success in single-image tasks.<n>Real-world scenarios often involve intricate multi-image inputs, leading to a notable performance decline.<n>We propose Focus-Centric Visual Chain, a novel paradigm that enhances VLMs'perception, comprehension, and reasoning abilities in multi-image scenarios.
arXiv Detail & Related papers (2025-04-28T19:02:18Z) - Image Regeneration: Evaluating Text-to-Image Model via Generating Identical Image with Multimodal Large Language Models [54.052963634384945]
We introduce the Image Regeneration task to assess text-to-image models.
We use GPT4V to bridge the gap between the reference image and the text input for the T2I model.
We also present ImageRepainter framework to enhance the quality of generated images.
arXiv Detail & Related papers (2024-11-14T13:52:43Z) - VLEU: a Method for Automatic Evaluation for Generalizability of Text-to-Image Models [18.259733507395634]
We introduce a new metric called Visual Language Evaluation Understudy (VLEU)
VLEU quantifies a model's generalizability by computing the Kullback-Leibler divergence between the marginal distribution of the visual text and the conditional distribution of the images generated by the model.
Our experiments demonstrate the effectiveness of VLEU in evaluating the generalization capability of various T2I models.
arXiv Detail & Related papers (2024-09-23T04:50:36Z) - VEGA: Learning Interleaved Image-Text Comprehension in Vision-Language Large Models [76.94378391979228]
We introduce a new, more demanding task known as Interleaved Image-Text (IITC)
This task challenges models to discern and disregard superfluous elements in both images and text to accurately answer questions.
In support of this task, we further craft a new VEGA dataset, tailored for the IITC task on scientific content, and devised a subtask, Image-Text Association (ITA)
arXiv Detail & Related papers (2024-06-14T17:59:40Z) - Advanced Multimodal Deep Learning Architecture for Image-Text Matching [33.8315200009152]
Image-text matching is a key multimodal task that aims to model the semantic association between images and text as a matching relationship.
We introduce an advanced multimodal deep learning architecture, which combines the high-level abstract representation ability of deep neural networks for visual information with the advantages of natural language processing models for text semantic understanding.
Experiments show that compared with existing image-text matching models, the optimized new model has significantly improved performance on a series of benchmark data sets.
arXiv Detail & Related papers (2024-06-13T08:32:24Z) - OT-Attack: Enhancing Adversarial Transferability of Vision-Language
Models via Optimal Transport Optimization [65.57380193070574]
Vision-language pre-training models are vulnerable to multi-modal adversarial examples.
Recent works have indicated that leveraging data augmentation and image-text modal interactions can enhance the transferability of adversarial examples.
We propose an Optimal Transport-based Adversarial Attack, dubbed OT-Attack.
arXiv Detail & Related papers (2023-12-07T16:16:50Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
The ability of text embedding models to generalize across a wide range of syntactic contexts remains under-explored.
Our findings reveal that existing text embedding models have not sufficiently addressed these syntactic understanding challenges.
We propose strategies to augment the generalization ability of text embedding models in diverse syntactic scenarios.
arXiv Detail & Related papers (2023-11-14T08:51:00Z) - Hypernymy Understanding Evaluation of Text-to-Image Models via WordNet
Hierarchy [12.82992353036576]
We measure the capability of popular text-to-image models to understand $textithypernymy$, or the "is-a" relation between words.
We show how our metrics can provide a better understanding of the individual strengths and weaknesses of popular text-to-image models.
arXiv Detail & Related papers (2023-10-13T16:53:25Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
This paper presents UniDiff, a unified multi-modal model that integrates image-text contrastive learning (ITC), text-conditioned image synthesis learning (IS), and reciprocal semantic consistency modeling (RSC)
UniDiff demonstrates versatility in both multi-modal understanding and generative tasks.
arXiv Detail & Related papers (2023-06-01T15:39:38Z) - OCRBench: On the Hidden Mystery of OCR in Large Multimodal Models [122.27878464009181]
We conducted a comprehensive evaluation of Large Multimodal Models, such as GPT4V and Gemini, in various text-related visual tasks.
OCRBench contains 29 datasets, making it the most comprehensive OCR evaluation benchmark available.
arXiv Detail & Related papers (2023-05-13T11:28:37Z) - Improving Generation and Evaluation of Visual Stories via Semantic
Consistency [72.00815192668193]
Given a series of natural language captions, an agent must generate a sequence of images that correspond to the captions.
Prior work has introduced recurrent generative models which outperform synthesis text-to-image models on this task.
We present a number of improvements to prior modeling approaches, including the addition of a dual learning framework.
arXiv Detail & Related papers (2021-05-20T20:42:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.