Learning Time-Aware Causal Representation for Model Generalization in Evolving Domains
- URL: http://arxiv.org/abs/2506.17718v2
- Date: Sat, 28 Jun 2025 07:42:53 GMT
- Title: Learning Time-Aware Causal Representation for Model Generalization in Evolving Domains
- Authors: Zhuo He, Shuang Li, Wenze Song, Longhui Yuan, Jian Liang, Han Li, Kun Gai,
- Abstract summary: We develop a time-aware structural causal model (SCM) that incorporates dynamic causal factors and the causal mechanism drifts.<n>We show that our method can yield the optimal causal predictor for each time domain.<n>Results on both synthetic and real-world datasets exhibit that SYNC can achieve superior temporal generalization performance.
- Score: 50.66049136093248
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Endowing deep models with the ability to generalize in dynamic scenarios is of vital significance for real-world deployment, given the continuous and complex changes in data distribution. Recently, evolving domain generalization (EDG) has emerged to address distribution shifts over time, aiming to capture evolving patterns for improved model generalization. However, existing EDG methods may suffer from spurious correlations by modeling only the dependence between data and targets across domains, creating a shortcut between task-irrelevant factors and the target, which hinders generalization. To this end, we design a time-aware structural causal model (SCM) that incorporates dynamic causal factors and the causal mechanism drifts, and propose \textbf{S}tatic-D\textbf{YN}amic \textbf{C}ausal Representation Learning (\textbf{SYNC}), an approach that effectively learns time-aware causal representations. Specifically, it integrates specially designed information-theoretic objectives into a sequential VAE framework which captures evolving patterns, and produces the desired representations by preserving intra-class compactness of causal factors both across and within domains. Moreover, we theoretically show that our method can yield the optimal causal predictor for each time domain. Results on both synthetic and real-world datasets exhibit that SYNC can achieve superior temporal generalization performance.
Related papers
- Consistent World Models via Foresight Diffusion [56.45012929930605]
We argue that a key bottleneck in learning consistent diffusion-based world models lies in the suboptimal predictive ability.<n>We propose Foresight Diffusion (ForeDiff), a diffusion-based world modeling framework that enhances consistency by decoupling condition understanding from target denoising.
arXiv Detail & Related papers (2025-05-22T10:01:59Z) - Let Synthetic Data Shine: Domain Reassembly and Soft-Fusion for Single Domain Generalization [68.41367635546183]
Single Domain Generalization aims to train models with consistent performance across diverse scenarios using data from a single source.<n>We propose Discriminative Domain Reassembly and Soft-Fusion (DRSF), a training framework leveraging synthetic data to improve model generalization.
arXiv Detail & Related papers (2025-03-17T18:08:03Z) - Time Series Domain Adaptation via Latent Invariant Causal Mechanism [28.329164754662354]
Time series domain adaptation aims to transfer the complex temporal dependence from the labeled source domain to the unlabeled target domain.<n>Recent advances leverage the stable causal mechanism over observed variables to model the domain-invariant temporal dependence.<n>However, modeling precise causal structures in high-dimensional data, such as videos, remains challenging.
arXiv Detail & Related papers (2025-02-23T16:25:58Z) - Learning Latent Spaces for Domain Generalization in Time Series Forecasting [60.29403194508811]
Time series forecasting is vital in many real-world applications, yet developing models that generalize well on unseen relevant domains remains underexplored.<n>We propose a framework for domain generalization in time series forecasting by mining the latent factors that govern temporal dependencies across domains.<n>Our approach uses a decomposition-based architecture with a new Conditional $beta$-Variational Autoencoder (VAE), wherein time series data is first decomposed into trend-cyclical and seasonal components.
arXiv Detail & Related papers (2024-12-15T12:41:53Z) - DeCaf: A Causal Decoupling Framework for OOD Generalization on Node Classification [14.96980804513399]
Graph Neural Networks (GNNs) are susceptible to distribution shifts, creating vulnerability and security issues in critical domains.
Existing methods that target learning an invariant (feature, structure)-label mapping often depend on oversimplified assumptions about the data generation process.
We introduce a more realistic graph data generation model using Structural Causal Models (SCMs)
We propose a casual decoupling framework, DeCaf, that independently learns unbiased feature-label and structure-label mappings.
arXiv Detail & Related papers (2024-10-27T00:22:18Z) - Revisiting Spurious Correlation in Domain Generalization [12.745076668687748]
We build a structural causal model (SCM) to describe the causality within data generation process.
We further conduct a thorough analysis of the mechanisms underlying spurious correlation.
In this regard, we propose to control confounding bias in OOD generalization by introducing a propensity score weighted estimator.
arXiv Detail & Related papers (2024-06-17T13:22:00Z) - Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
In this work, we propose a geometric diffusion model with learnable divergence fields for the challenging problem with interdependent data.
We derive a new learning objective through causal inference, which can guide the model to learn generalizable patterns of interdependence that are insensitive across domains.
arXiv Detail & Related papers (2024-06-07T14:29:21Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - CODA: Temporal Domain Generalization via Concept Drift Simulator [34.21255368783787]
In real-world applications, machine learning models often become obsolete due to shifts in the joint distribution arising from underlying temporal trends.
We propose the COncept Drift simulAtor framework incorporating a predicted feature correlation matrix to simulate future data for model training.
arXiv Detail & Related papers (2023-10-02T18:04:34Z) - Temporal Domain Generalization with Drift-Aware Dynamic Neural Network [12.483886657900525]
We propose a Temporal Domain Generalization with Drift-Aware Dynamic Neural Network (DRAIN) framework.
Specifically, we formulate the problem into a Bayesian framework that jointly models the relation between data and model dynamics.
It captures the temporal drift of model parameters and data distributions and can predict models in the future without the presence of future data.
arXiv Detail & Related papers (2022-05-21T20:01:31Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
We introduce a causal formalism of motion forecasting, which casts the problem as a dynamic process with three groups of latent variables.
We devise a modular architecture that factorizes the representations of invariant mechanisms and style confounders to approximate a causal graph.
Experiment results on synthetic and real datasets show that our three proposed components significantly improve the robustness and reusability of the learned motion representations.
arXiv Detail & Related papers (2021-11-29T18:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.