Auto-Regressive Surface Cutting
- URL: http://arxiv.org/abs/2506.18017v1
- Date: Sun, 22 Jun 2025 12:53:07 GMT
- Title: Auto-Regressive Surface Cutting
- Authors: Yang Li, Victor Cheung, Xinhai Liu, Yuguang Chen, Zhongjin Luo, Biwen Lei, Haohan Weng, Zibo Zhao, Jingwei Huang, Zhuo Chen, Chunchao Guo,
- Abstract summary: We introduce SeamGPT, an auto-recanned model that generates cutting seams by mimicking professional models.<n>Our approach achieves exceptional performance on UV unwrapping benchmarks containing both manifold and non-manifold meshes.<n>It enhances existing 3D segmentation tools by providing clean boundaries for part decomposition.
- Score: 16.593710516134472
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Surface cutting is a fundamental task in computer graphics, with applications in UV parameterization, texture mapping, and mesh decomposition. However, existing methods often produce technically valid but overly fragmented atlases that lack semantic coherence. We introduce SeamGPT, an auto-regressive model that generates cutting seams by mimicking professional workflows. Our key technical innovation lies in formulating surface cutting as a next token prediction task: sample point clouds on mesh vertices and edges, encode them as shape conditions, and employ a GPT-style transformer to sequentially predict seam segments with quantized 3D coordinates. Our approach achieves exceptional performance on UV unwrapping benchmarks containing both manifold and non-manifold meshes, including artist-created, and 3D-scanned models. In addition, it enhances existing 3D segmentation tools by providing clean boundaries for part decomposition.
Related papers
- MeshCraft: Exploring Efficient and Controllable Mesh Generation with Flow-based DiTs [79.45006864728893]
MeshCraft is a framework for efficient and controllable mesh generation.<n>It uses continuous spatial diffusion to generate discrete triangle faces.<n>It can generate an 800-face mesh in just 3.2 seconds.
arXiv Detail & Related papers (2025-03-29T09:21:50Z) - MeshPad: Interactive Sketch-Conditioned Artist-Designed Mesh Generation and Editing [64.84885028248395]
MeshPad is a generative approach that creates 3D meshes from sketch inputs.<n>We focus on enabling consistent edits by decomposing editing into 'deletion' of regions of a mesh, followed by 'addition' of new mesh geometry.<n>Our approach is based on a triangle sequence-based mesh representation, exploiting a large Transformer model for mesh triangle addition and deletion.
arXiv Detail & Related papers (2025-03-03T11:27:44Z) - Flatten Anything: Unsupervised Neural Surface Parameterization [76.4422287292541]
We introduce the Flatten Anything Model (FAM), an unsupervised neural architecture to achieve global free-boundary surface parameterization.
Compared with previous methods, our FAM directly operates on discrete surface points without utilizing connectivity information.
Our FAM is fully-automated without the need for pre-cutting and can deal with highly-complex topologies.
arXiv Detail & Related papers (2024-05-23T14:39:52Z) - Nuvo: Neural UV Mapping for Unruly 3D Representations [61.87715912587394]
Existing UV mapping algorithms operate on geometry produced by state-of-the-art 3D reconstruction and generation techniques.
We present a UV mapping method designed to operate on geometry produced by 3D reconstruction and generation techniques.
arXiv Detail & Related papers (2023-12-11T18:58:38Z) - VoroMesh: Learning Watertight Surface Meshes with Voronoi Diagrams [34.71121458068556]
VoroMesh is a novel and differentiable Voronoi-based representation of watertight 3D shape surfaces.
To learn the position of the generators, we propose a novel loss function, dubbed VoroLoss.
A direct optimization of the Voroloss to obtain generators on the Thingi32 dataset demonstrates the geometric efficiency of our representation.
arXiv Detail & Related papers (2023-08-28T14:35:58Z) - FoR$^2$M: Recognition and Repair of Foldings in Mesh Surfaces.
Application to 3D Object Degradation [0.0]
A novel method for the recognition and repair of mesh surface foldings is presented.
The proposed method is directly applicable to simple mesh surface representations while it does not perform any embedding of the 3D mesh.
arXiv Detail & Related papers (2022-06-20T10:43:32Z) - Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D
Shape Synthesis [90.26556260531707]
DMTet is a conditional generative model that can synthesize high-resolution 3D shapes using simple user guides such as coarse voxels.
Unlike deep 3D generative models that directly generate explicit representations such as meshes, our model can synthesize shapes with arbitrary topology.
arXiv Detail & Related papers (2021-11-08T05:29:35Z) - Primal-Dual Mesh Convolutional Neural Networks [62.165239866312334]
We propose a primal-dual framework drawn from the graph-neural-network literature to triangle meshes.
Our method takes features for both edges and faces of a 3D mesh as input and dynamically aggregates them.
We provide theoretical insights of our approach using tools from the mesh-simplification literature.
arXiv Detail & Related papers (2020-10-23T14:49:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.