Splitformer: An improved early-exit architecture for automatic speech recognition on edge devices
- URL: http://arxiv.org/abs/2506.18035v1
- Date: Sun, 22 Jun 2025 13:34:18 GMT
- Title: Splitformer: An improved early-exit architecture for automatic speech recognition on edge devices
- Authors: Maxence Lasbordes, Daniele Falavigna, Alessio Brutti,
- Abstract summary: Speech recognition software needs to be able to adjust the computational load of neural models during inference in a resource aware manner.<n>Early-exit architectures process the input with a subset of their layers, exiting at intermediate branches.<n>For automatic speech recognition applications there are memory-efficient neural architectures that apply variable frame rate analysis.<n>We show that in this way the speech recognition performance on standard benchmarks significantly improve, at the cost of a small increase in the overall number of model parameters.
- Score: 11.05223262950967
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability to dynamically adjust the computational load of neural models during inference in a resource aware manner is crucial for on-device processing scenarios, characterised by limited and time-varying computational resources. Early-exit architectures represent an elegant and effective solution, since they can process the input with a subset of their layers, exiting at intermediate branches (the upmost layers are hence removed from the model). From a different perspective, for automatic speech recognition applications there are memory-efficient neural architectures that apply variable frame rate analysis, through downsampling/upsampling operations in the middle layers, reducing the overall number of operations and improving significantly the performance on well established benchmarks. One example is the Zipformer. However, these architectures lack the modularity necessary to inject early-exit branches. With the aim of improving the performance in early-exit models, we propose introducing parallel layers in the architecture that process downsampled versions of their inputs. % in conjunction with standard processing layers. We show that in this way the speech recognition performance on standard benchmarks significantly improve, at the cost of a small increase in the overall number of model parameters but without affecting the inference time.
Related papers
- Scaling Linear Attention with Sparse State Expansion [58.161410995744596]
Transformer architecture struggles with long-context scenarios due to quadratic computation and linear memory growth.<n>We introduce a row-sparse update formulation for linear attention by conceptualizing state updating as information classification.<n>Second, we present Sparse State Expansion (SSE) within the sparse framework, which expands the contextual state into multiple partitions.
arXiv Detail & Related papers (2025-07-22T13:27:31Z) - Pangu Embedded: An Efficient Dual-system LLM Reasoner with Metacognition [95.54406667705999]
Pangu Embedded is an efficient Large Language Model (LLM) reasoner developed on Ascend Neural Processing Units (NPUs)<n>It addresses the significant computational costs and inference latency challenges prevalent in existing reasoning-optimized LLMs.<n>It delivers rapid responses and state-of-the-art reasoning quality within a single, unified model architecture.
arXiv Detail & Related papers (2025-05-28T14:03:02Z) - Large Language Model Partitioning for Low-Latency Inference at the Edge [6.019511429258932]
Large Language Models (LLMs) based on autoregressive, decoder-only Transformers generate text one token at a time, where a token represents a discrete unit of text.<n>As this iterative process steadily increases memory and compute demands, layer-based partitioning in resource-constrained edge environments often results in memory overload or high inference latency.<n>We propose a resource-aware Transformer architecture partitioning algorithm, where the partitioning decision is updated at regular intervals during token generation.<n>Our approach partitions the decoder at the attention head level, co-locating each attention head with its key-value cache and allowing dynamic migrations whenever resources become tight.
arXiv Detail & Related papers (2025-05-05T10:16:16Z) - Adaptable Embeddings Network (AEN) [49.1574468325115]
We introduce Adaptable Embeddings Networks (AEN), a novel dual-encoder architecture using Kernel Density Estimation (KDE)
AEN allows for runtime adaptation of classification criteria without retraining and is non-autoregressive.
The architecture's ability to preprocess and cache condition embeddings makes it ideal for edge computing applications and real-time monitoring systems.
arXiv Detail & Related papers (2024-11-21T02:15:52Z) - COrAL: Order-Agnostic Language Modeling for Efficient Iterative Refinement [80.18490952057125]
Iterative refinement has emerged as an effective paradigm for enhancing the capabilities of large language models (LLMs) on complex tasks.
We propose Context-Wise Order-Agnostic Language Modeling (COrAL) to overcome these challenges.
Our approach models multiple token dependencies within manageable context windows, enabling the model to perform iterative refinement internally.
arXiv Detail & Related papers (2024-10-12T23:56:19Z) - Training dynamic models using early exits for automatic speech
recognition on resource-constrained devices [15.879328412777008]
Early-exit architectures enable the development of dynamic models capable of adapting their size and architecture to varying levels of computational resources and ASR performance demands.
We show that early-exit models trained from scratch not only preserve performance when using fewer encoder layers but also exhibit enhanced task accuracy compared to single-exit or pre-trained models.
Results provide insights into the training dynamics of early-exit architectures for ASR models.
arXiv Detail & Related papers (2023-09-18T07:45:16Z) - Dynamic Perceiver for Efficient Visual Recognition [87.08210214417309]
We propose Dynamic Perceiver (Dyn-Perceiver) to decouple the feature extraction procedure and the early classification task.
A feature branch serves to extract image features, while a classification branch processes a latent code assigned for classification tasks.
Early exits are placed exclusively within the classification branch, thus eliminating the need for linear separability in low-level features.
arXiv Detail & Related papers (2023-06-20T03:00:22Z) - DCT-Former: Efficient Self-Attention with Discrete Cosine Transform [4.622165486890318]
An intrinsic limitation of the Trasformer architectures arises from the computation of the dot-product attention.
Our idea takes inspiration from the world of lossy data compression (such as the JPEG algorithm) to derive an approximation of the attention module.
An extensive section of experiments shows that our method takes up less memory for the same performance, while also drastically reducing inference time.
arXiv Detail & Related papers (2022-03-02T15:25:27Z) - GradInit: Learning to Initialize Neural Networks for Stable and
Efficient Training [59.160154997555956]
We present GradInit, an automated and architecture method for initializing neural networks.
It is based on a simple agnostic; the variance of each network layer is adjusted so that a single step of SGD or Adam results in the smallest possible loss value.
It also enables training the original Post-LN Transformer for machine translation without learning rate warmup.
arXiv Detail & Related papers (2021-02-16T11:45:35Z) - Ensemble Wrapper Subsampling for Deep Modulation Classification [70.91089216571035]
Subsampling of received wireless signals is important for relaxing hardware requirements as well as the computational cost of signal processing algorithms.
We propose a subsampling technique to facilitate the use of deep learning for automatic modulation classification in wireless communication systems.
arXiv Detail & Related papers (2020-05-10T06:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.