RoboTwin 2.0: A Scalable Data Generator and Benchmark with Strong Domain Randomization for Robust Bimanual Robotic Manipulation
- URL: http://arxiv.org/abs/2506.18088v1
- Date: Sun, 22 Jun 2025 16:26:53 GMT
- Title: RoboTwin 2.0: A Scalable Data Generator and Benchmark with Strong Domain Randomization for Robust Bimanual Robotic Manipulation
- Authors: Tianxing Chen, Zanxin Chen, Baijun Chen, Zijian Cai, Yibin Liu, Qiwei Liang, Zixuan Li, Xianliang Lin, Yiheng Ge, Zhenyu Gu, Weiliang Deng, Yubin Guo, Tian Nian, Xuanbing Xie, Qiangyu Chen, Kailun Su, Tianling Xu, Guodong Liu, Mengkang Hu, Huan-ang Gao, Kaixuan Wang, Zhixuan Liang, Yusen Qin, Xiaokang Yang, Ping Luo, Yao Mu,
- Abstract summary: We present RoboTwin 2.0, a scalable simulation framework that enables automated, large-scale generation of diverse and realistic data.<n>To improve sim-to-real transfer, RoboTwin 2.0 incorporates structured domain randomization along five axes: clutter, lighting, background, tabletop height and language instructions.<n>We instantiate this framework across 50 dual-arm tasks spanning five robot embodiments, and pre-collect over 100,000 domain-randomized expert trajectories.
- Score: 51.86515213749527
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulation-based data synthesis has emerged as a powerful paradigm for enhancing real-world robotic manipulation. However, existing synthetic datasets remain insufficient for robust bimanual manipulation due to two challenges: (1) the lack of an efficient, scalable data generation method for novel tasks, and (2) oversimplified simulation environments that fail to capture real-world complexity. We present RoboTwin 2.0, a scalable simulation framework that enables automated, large-scale generation of diverse and realistic data, along with unified evaluation protocols for dual-arm manipulation. We first construct RoboTwin-OD, a large-scale object library comprising 731 instances across 147 categories, each annotated with semantic and manipulation-relevant labels. Building on this foundation, we develop an expert data synthesis pipeline that combines multimodal large language models (MLLMs) with simulation-in-the-loop refinement to generate task-level execution code automatically. To improve sim-to-real transfer, RoboTwin 2.0 incorporates structured domain randomization along five axes: clutter, lighting, background, tabletop height and language instructions, thereby enhancing data diversity and policy robustness. We instantiate this framework across 50 dual-arm tasks spanning five robot embodiments, and pre-collect over 100,000 domain-randomized expert trajectories. Empirical results show a 10.9% gain in code generation success and improved generalization to novel real-world scenarios. A VLA model fine-tuned on our dataset achieves a 367% relative improvement (42.0% vs. 9.0%) on unseen scene real-world tasks, while zero-shot models trained solely on our synthetic data achieve a 228% relative gain, highlighting strong generalization without real-world supervision. We release the data generator, benchmark, dataset, and code to support scalable research in robust bimanual manipulation.
Related papers
- Synthetic Dataset Generation for Autonomous Mobile Robots Using 3D Gaussian Splatting for Vision Training [0.708987965338602]
We propose a novel method for automatically generating annotated synthetic data in Unreal Engine.<n>We demonstrate that synthetic datasets can achieve performance comparable to that of real-world datasets.<n>This is the first application of synthetic data for training object detection algorithms in robot soccer.
arXiv Detail & Related papers (2025-06-05T14:37:40Z) - RoboTwin: Dual-Arm Robot Benchmark with Generative Digital Twins [33.78621017138685]
RoboTwin is a generative digital twin framework that uses 3D generative foundation models and large language models to produce diverse expert datasets.<n>Specifically, RoboTwin creates varied digital twins of objects from single 2D images, generating realistic and interactive scenarios.<n>Our framework offers a comprehensive benchmark with both simulated and real-world data, enabling standardized evaluation and better alignment between simulated training and real-world performance.
arXiv Detail & Related papers (2025-04-17T16:14:24Z) - Scaling Laws of Synthetic Data for Language Models [132.67350443447611]
We introduce SynthLLM, a scalable framework that transforms pre-training corpora into diverse, high-quality synthetic datasets.<n>Our approach achieves this by automatically extracting and recombining high-level concepts across multiple documents using a graph algorithm.
arXiv Detail & Related papers (2025-03-25T11:07:12Z) - Synthesizing Post-Training Data for LLMs through Multi-Agent Simulation [51.20656279478878]
MATRIX is a multi-agent simulator that automatically generates diverse text-based scenarios.<n>We introduce MATRIX-Gen for controllable and highly realistic data synthesis.<n>On AlpacaEval 2 and Arena-Hard benchmarks, Llama-3-8B-Base, post-trained on datasets synthesized by MATRIX-Gen with just 20K instruction-response pairs, outperforms Meta's Llama-3-8B-Instruct model.
arXiv Detail & Related papers (2024-10-18T08:01:39Z) - GenSim2: Scaling Robot Data Generation with Multi-modal and Reasoning LLMs [38.281562732050084]
GenSim2 is a scalable framework for complex and realistic simulation task creation.
The pipeline can generate data for up to 100 articulated tasks with 200 objects and reduce the required human efforts.
We show a promising usage of GenSim2 that the generated data can be used for zero-shot transfer or co-train with real-world collected data.
arXiv Detail & Related papers (2024-10-04T17:51:33Z) - RoboTwin: Dual-Arm Robot Benchmark with Generative Digital Twins (early version) [25.298789781487084]
RoboTwin is a generative digital twin framework that uses 3D generative foundation models and large language models to produce diverse expert datasets.<n>Specifically, RoboTwin creates varied digital twins of objects from single 2D images, generating realistic and interactive scenarios.<n>Our framework offers a comprehensive benchmark with both simulated and real-world data, enabling standardized evaluation and better alignment between simulated training and real-world performance.
arXiv Detail & Related papers (2024-09-04T17:59:52Z) - TarGEN: Targeted Data Generation with Large Language Models [51.87504111286201]
TarGEN is a multi-step prompting strategy for generating high-quality synthetic datasets.
We augment TarGEN with a method known as self-correction empowering LLMs to rectify inaccurately labeled instances.
A comprehensive analysis of the synthetic dataset compared to the original dataset reveals similar or higher levels of dataset complexity and diversity.
arXiv Detail & Related papers (2023-10-27T03:32:17Z) - ProcTHOR: Large-Scale Embodied AI Using Procedural Generation [55.485985317538194]
ProcTHOR is a framework for procedural generation of Embodied AI environments.
We demonstrate state-of-the-art results across 6 embodied AI benchmarks for navigation, rearrangement, and arm manipulation.
arXiv Detail & Related papers (2022-06-14T17:09:35Z) - Deep Imitation Learning for Bimanual Robotic Manipulation [70.56142804957187]
We present a deep imitation learning framework for robotic bimanual manipulation.
A core challenge is to generalize the manipulation skills to objects in different locations.
We propose to (i) decompose the multi-modal dynamics into elemental movement primitives, (ii) parameterize each primitive using a recurrent graph neural network to capture interactions, and (iii) integrate a high-level planner that composes primitives sequentially and a low-level controller to combine primitive dynamics and inverse kinematics control.
arXiv Detail & Related papers (2020-10-11T01:40:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.