YouTube-Occ: Learning Indoor 3D Semantic Occupancy Prediction from YouTube Videos
- URL: http://arxiv.org/abs/2506.18266v1
- Date: Mon, 23 Jun 2025 03:44:43 GMT
- Title: YouTube-Occ: Learning Indoor 3D Semantic Occupancy Prediction from YouTube Videos
- Authors: Haoming Chen, Lichen Yuan, TianFang Sun, Jingyu Gong, Xin Tan, Zhizhong Zhang, Yuan Xie,
- Abstract summary: In this paper, we demonstrate that 3D spatially-accurate training can be achieved using only indoor Internet data.<n>We establish a fully self-supervised model to leverage accessible 2D prior knowledge for reaching powerful 3D indoor perception.
- Score: 27.030960281969865
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: 3D semantic occupancy prediction in the past was considered to require precise geometric relationships in order to enable effective training. However, in complex indoor environments, the large-scale and widespread collection of data, along with the necessity for fine-grained annotations, becomes impractical due to the complexity of data acquisition setups and privacy concerns. In this paper, we demonstrate that 3D spatially-accurate training can be achieved using only indoor Internet data, without the need for any pre-knowledge of intrinsic or extrinsic camera parameters. In our framework, we collect a web dataset, YouTube-Occ, which comprises house tour videos from YouTube, providing abundant real house scenes for 3D representation learning. Upon on this web dataset, we establish a fully self-supervised model to leverage accessible 2D prior knowledge for reaching powerful 3D indoor perception. Specifically, we harness the advantages of the prosperous vision foundation models, distilling the 2D region-level knowledge into the occupancy network by grouping the similar pixels into superpixels. Experimental results show that our method achieves state-of-the-art zero-shot performance on two popular benchmarks (NYUv2 and OccScanNet
Related papers
- Towards Scalable Spatial Intelligence via 2D-to-3D Data Lifting [64.64738535860351]
We present a scalable pipeline that converts single-view images into comprehensive, scale- and appearance-realistic 3D representations.<n>Our method bridges the gap between the vast repository of imagery and the increasing demand for spatial scene understanding.<n>By automatically generating authentic, scale-aware 3D data from images, we significantly reduce data collection costs and open new avenues for advancing spatial intelligence.
arXiv Detail & Related papers (2025-07-24T14:53:26Z) - Weak Cube R-CNN: Weakly Supervised 3D Detection using only 2D Bounding Boxes [5.492174268132387]
3D object detectors are typically trained in a fully supervised way, relying extensively on 3D labeled data.<n>This work focuses on weakly-supervised 3D detection to reduce data needs using a monocular method.<n>We propose a general model Weak Cube R-CNN, which can predict objects in 3D at inference time.
arXiv Detail & Related papers (2025-04-17T19:13:42Z) - Open-Vocabulary High-Resolution 3D (OVHR3D) Data Segmentation and Annotation Framework [1.1280113914145702]
This research aims to design and develop a comprehensive and efficient framework for 3D segmentation tasks.<n>The framework integrates Grounding DINO and Segment anything Model, augmented by an enhancement in 2D image rendering via 3D mesh.
arXiv Detail & Related papers (2024-12-09T07:39:39Z) - Articulate3D: Holistic Understanding of 3D Scenes as Universal Scene Description [56.69740649781989]
3D scene understanding is a long-standing challenge in computer vision and a key component in enabling mixed reality, wearable computing, and embodied AI.<n>We introduce Articulate3D, an expertly curated 3D dataset featuring high-quality manual annotations on 280 indoor scenes.<n>We also present USDNet, a novel unified framework capable of simultaneously predicting part segmentation along with a full specification of motion attributes for articulated objects.
arXiv Detail & Related papers (2024-12-02T11:33:55Z) - Improving 2D Feature Representations by 3D-Aware Fine-Tuning [17.01280751430423]
Current visual foundation models are trained purely on unstructured 2D data.
We show that fine-tuning on 3D-aware data improves the quality of emerging semantic features.
arXiv Detail & Related papers (2024-07-29T17:59:21Z) - Volumetric Environment Representation for Vision-Language Navigation [66.04379819772764]
Vision-language navigation (VLN) requires an agent to navigate through a 3D environment based on visual observations and natural language instructions.
We introduce a Volumetric Environment Representation (VER), which voxelizes the physical world into structured 3D cells.
VER predicts 3D occupancy, 3D room layout, and 3D bounding boxes jointly.
arXiv Detail & Related papers (2024-03-21T06:14:46Z) - PonderV2: Pave the Way for 3D Foundation Model with A Universal Pre-training Paradigm [111.16358607889609]
We introduce a novel universal 3D pre-training framework designed to facilitate the acquisition of efficient 3D representation.<n>For the first time, PonderV2 achieves state-of-the-art performance on 11 indoor and outdoor benchmarks, implying its effectiveness.
arXiv Detail & Related papers (2023-10-12T17:59:57Z) - AutoDecoding Latent 3D Diffusion Models [95.7279510847827]
We present a novel approach to the generation of static and articulated 3D assets that has a 3D autodecoder at its core.
The 3D autodecoder framework embeds properties learned from the target dataset in the latent space.
We then identify the appropriate intermediate volumetric latent space, and introduce robust normalization and de-normalization operations.
arXiv Detail & Related papers (2023-07-07T17:59:14Z) - CLIP$^2$: Contrastive Language-Image-Point Pretraining from Real-World
Point Cloud Data [80.42480679542697]
We propose Contrastive Language-Image-Point Cloud Pretraining (CLIP$2$) to learn the transferable 3D point cloud representation in realistic scenarios.
Specifically, we exploit naturally-existed correspondences in 2D and 3D scenarios, and build well-aligned and instance-based text-image-point proxies from those complex scenarios.
arXiv Detail & Related papers (2023-03-22T09:32:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.