Transforming H&E images into IHC: A Variance-Penalized GAN for Precision Oncology
- URL: http://arxiv.org/abs/2506.18371v1
- Date: Mon, 23 Jun 2025 07:57:22 GMT
- Title: Transforming H&E images into IHC: A Variance-Penalized GAN for Precision Oncology
- Authors: Sara Rehmat, Hafeez Ur Rehman,
- Abstract summary: This study proposes an advanced deep learning-based image translation framework to generate highfidelity IHC images from H&E-stained tissue samples.<n>By modifying the loss function of pyramid pix2pix, we mitigate mode collapse, a fundamental limitation in generative adversarial networks (GANs)<n>Our model particularly excels in translating HER2-positive (IHC 3+) images, which have remained challenging for existing methods due to their complex morphological variations.
- Score: 1.0972875392165036
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The overexpression of the human epidermal growth factor receptor 2 (HER2) in breast cells is a key driver of HER2-positive breast cancer, a highly aggressive subtype requiring precise diagnosis and targeted therapy. Immunohistochemistry (IHC) is the standard technique for HER2 assessment but is costly, labor-intensive, and highly dependent on antibody selection. In contrast, hematoxylin and eosin (H&E) staining, a routine histopathological procedure, offers broader accessibility but lacks HER2 specificity. This study proposes an advanced deep learning-based image translation framework to generate highfidelity IHC images from H&E-stained tissue samples, enabling cost-effective and scalable HER2 assessment. By modifying the loss function of pyramid pix2pix, we mitigate mode collapse, a fundamental limitation in generative adversarial networks (GANs), and introduce a novel variance-based penalty that enforces structural diversity in generated images. Our model particularly excels in translating HER2-positive (IHC 3+) images, which have remained challenging for existing methods due to their complex morphological variations. Extensive evaluations on the BCI histopathological dataset demonstrate that our model surpasses state-of-the-art methods in terms of peak signal-tonoise ratio (PSNR), structural similarity index (SSIM), and Frechet Inception Distance (FID), particularly in accurately translating HER2-positive (IHC 3+) images. Beyond medical imaging, our model exhibits superior performance in general image-to-image translation tasks, showcasing its potential across multiple domains. This work marks a significant step toward AI-driven precision oncology, offering a reliable and efficient alternative to traditional HER2 diagnostics.
Related papers
- StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusion is a framework that modifies AI-generated images into high-quality, imperceptible adversarial examples.
It is effective in both white-box and black-box settings, transforming AI-generated images into high-quality adversarial forgeries.
arXiv Detail & Related papers (2024-08-11T01:22:29Z) - Advancing H&E-to-IHC Stain Translation in Breast Cancer: A Multi-Magnification and Attention-Based Approach [13.88935300094334]
We propose a novel model integrating attention mechanisms and multi-magnification information processing.
Our model employs a multi-magnification processing strategy to extract and utilize information from various magnifications within pathology images.
Rigorous testing on a publicly available breast cancer dataset demonstrates superior performance compared to existing methods.
arXiv Detail & Related papers (2024-08-04T04:55:10Z) - Automated HER2 Scoring in Breast Cancer Images Using Deep Learning and Pyramid Sampling [3.711848341917877]
We introduce a deep learning-based approach utilizing pyramid sampling for the automated classification of HER2 status in IHC-stained BC tissue images.
Our approach analyzes morphological features at various spatial scales, efficiently managing the computational load and facilitating a detailed examination of cellular and larger-scale tissue-level details.
arXiv Detail & Related papers (2024-04-01T00:23:22Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - Improved HER2 Tumor Segmentation with Subtype Balancing using Deep
Generative Networks [5.44130112878356]
We propose to create synthetic images with semantically-conditioned deep generative networks.
We show the suitability of Generative Adversarial Networks (GANs) and especially diffusion models to create realistic images.
arXiv Detail & Related papers (2022-11-11T12:05:15Z) - BCI: Breast Cancer Immunohistochemical Image Generation through Pyramid
Pix2pix [8.82904507522587]
The evaluation of human epidermal growth factor receptor 2 (HER2) expression is essential to formulate a precise treatment for breast cancer.
For the first time, we propose a breast cancerchemical (BCI) benchmark attempting to synthesize IHC data directly with the paired hematoxylin and eosin stained images.
The dataset contains 4870 registered image pairs, covering a variety of HER2 expression levels.
arXiv Detail & Related papers (2022-04-25T04:00:47Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
This paper proposes a method for characterizing texture across histopathologic images with a considerable success rate.
It is possible to quantify the intrinsic properties of such images with promising accuracy on two HI datasets.
arXiv Detail & Related papers (2022-02-27T02:19:09Z) - Automated Scoring System of HER2 in Pathological Images under the
Microscope [3.689994643251581]
We propose a HER2 automated scoring system that strictly follows the HER2 scoring guidelines.
The proposed system will be embedded in our Thorough Eye platform for deployment in hospitals.
arXiv Detail & Related papers (2021-10-21T01:38:35Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.