Geometry-aware Distance Measure for Diverse Hierarchical Structures in Hyperbolic Spaces
- URL: http://arxiv.org/abs/2506.18533v1
- Date: Mon, 23 Jun 2025 11:43:39 GMT
- Title: Geometry-aware Distance Measure for Diverse Hierarchical Structures in Hyperbolic Spaces
- Authors: Pengxiang Li, Yuwei Wu, Zhi Gao, Xiaomeng Fan, Wei Wu, Zhipeng Lu, Yunde Jia, Mehrtash Harandi,
- Abstract summary: We propose a geometry-aware distance measure in hyperbolic spaces, which dynamically adapts to varying hierarchical structures.<n>Our approach consistently outperforms learning methods that use fixed distance measures.<n>Visualization shows clearer class boundaries and improved prototype separation in hyperbolic spaces.
- Score: 48.948334221681684
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning in hyperbolic spaces has attracted increasing attention due to its superior ability to model hierarchical structures of data. Most existing hyperbolic learning methods use fixed distance measures for all data, assuming a uniform hierarchy across all data points. However, real-world hierarchical structures exhibit significant diversity, making this assumption overly restrictive. In this paper, we propose a geometry-aware distance measure in hyperbolic spaces, which dynamically adapts to varying hierarchical structures. Our approach derives the distance measure by generating tailored projections and curvatures for each pair of data points, effectively mapping them to an appropriate hyperbolic space. We introduce a revised low-rank decomposition scheme and a hard-pair mining mechanism to mitigate the computational cost of pair-wise distance computation without compromising accuracy. We present an upper bound on the low-rank approximation error using Talagrand's concentration inequality, ensuring theoretical robustness. Extensive experiments on standard image classification (MNIST, CIFAR-10 and CIFAR-100), hierarchical classification (5-level CIFAR-100), and few-shot learning tasks (mini-ImageNet, tiered-ImageNet) demonstrate the effectiveness of our method. Our approach consistently outperforms learning methods that use fixed distance measures, with notable improvements on few-shot learning tasks, where it achieves over 5\% gains on mini-ImageNet. The results reveal that adaptive distance measures better capture diverse hierarchical structures, with visualization showing clearer class boundaries and improved prototype separation in hyperbolic spaces.
Related papers
- GeoMM: On Geodesic Perspective for Multi-modal Learning [55.41612200877861]
This paper introduces geodesic distance as a novel distance metric in multi-modal learning for the first time.<n>Our approach incorporates a comprehensive series of strategies to adapt geodesic distance for the current multimodal learning.
arXiv Detail & Related papers (2025-05-16T13:12:41Z) - Understanding and Mitigating Hyperbolic Dimensional Collapse in Graph Contrastive Learning [70.0681902472251]
We propose a novel contrastive learning framework to learn high-quality graph embeddings in hyperbolic space.<n>Specifically, we design the alignment metric that effectively captures the hierarchical data-invariant information.<n>We show that in the hyperbolic space one has to address the leaf- and height-level uniformity related to properties of trees.
arXiv Detail & Related papers (2023-10-27T15:31:42Z) - Hyperbolic Diffusion Embedding and Distance for Hierarchical
Representation Learning [13.976918651426205]
This paper presents a new method for hierarchical data embedding and distance.
Our method relies on combining diffusion geometry, a central approach to manifold learning, and hyperbolic geometry.
We show theoretically that our embedding and distance recover the underlying hierarchical structure.
arXiv Detail & Related papers (2023-05-30T11:49:39Z) - Provably Accurate and Scalable Linear Classifiers in Hyperbolic Spaces [39.71927912296049]
We propose a unified framework for learning scalable and simple hyperbolic linear classifiers.
The gist of our approach is to focus on Poincar'e ball models and formulate the classification problems using tangent space formalisms.
The excellent performance of the Poincar'e second-order and strategic perceptrons shows that the proposed framework can be extended to general machine learning problems in hyperbolic spaces.
arXiv Detail & Related papers (2022-03-07T21:36:21Z) - Adaptive Poincar\'e Point to Set Distance for Few-Shot Classification [30.84627437310717]
We learn a context-aware hyperbolic metric to characterize the distance between a point and a set associated with a learned set to set distance.
We empirically show that such metric yields in the presence of outliers and achieves a tangible improvement over baseline models.
arXiv Detail & Related papers (2021-12-03T05:08:11Z) - Highly Scalable and Provably Accurate Classification in Poincare Balls [40.82908295137667]
We establish a unified framework for learning scalable and simple hyperbolic linear classifiers with provable performance guarantees.
Our results include a new hyperbolic and second-order perceptron algorithm as well as an efficient and highly accurate convex optimization setup for hyperbolic support vector machine classifiers.
Their performance accuracies on synthetic data sets comprising millions of points, as well as on complex real-world data sets such as single-cell RNA-seq expression measurements, CIFAR10, Fashion-MNIST and mini-ImageNet.
arXiv Detail & Related papers (2021-09-08T16:59:39Z) - Deep Relational Metric Learning [84.95793654872399]
This paper presents a deep relational metric learning framework for image clustering and retrieval.
We learn an ensemble of features that characterizes an image from different aspects to model both interclass and intraclass distributions.
Experiments on the widely-used CUB-200-2011, Cars196, and Stanford Online Products datasets demonstrate that our framework improves existing deep metric learning methods and achieves very competitive results.
arXiv Detail & Related papers (2021-08-23T09:31:18Z) - Towards Certified Robustness of Distance Metric Learning [53.96113074344632]
We advocate imposing an adversarial margin in the input space so as to improve the generalization and robustness of metric learning algorithms.
We show that the enlarged margin is beneficial to the generalization ability by using the theoretical technique of algorithmic robustness.
arXiv Detail & Related papers (2020-06-10T16:51:53Z) - DeepEMD: Differentiable Earth Mover's Distance for Few-Shot Learning [122.51237307910878]
We develop methods for few-shot image classification from a new perspective of optimal matching between image regions.
We employ the Earth Mover's Distance (EMD) as a metric to compute a structural distance between dense image representations.
To generate the important weights of elements in the formulation, we design a cross-reference mechanism.
arXiv Detail & Related papers (2020-03-15T08:13:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.